首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The electrophoretic mobility of a poly(N-isopropylacrylamide) microgel containing carboxylic groups has been measured as a function of the ionic strength, between 0.1 and 100 mM NaCl, over the temperature range 2545 C. The mobility data obtained have been evaluated using different models, including the porous-sphere, the soft-plate and the soft-sphere models as well as the hard-sphere model developed by Henry and later refined by O'Brien and White. The “porous” or “soft” behaviour is evident at lower temperatures, whereas at higher temperatures none of the models can fully explain the observed behaviour. It is suggested that the discrepancies at higher temperatures can be partly ascribed to the neglect of the relaxation effect in the “soft” models. Received: 30 June 1999/Accepted in revised form: 12 October 1999  相似文献   

2.
By employing small-angle neutron scattering (SANS), we investigated the microstructures of, poly(N-isopropylacrylamide) (PNIPA)-block-poly(ethylene glycol) (PEG) (NE) in deuterated water D2O, as related to macroscopic behaviors of fluidity, turbidity and synerisis. SANS revealed following results: (i) microphase separation occurs at around above 17 °C in a temperature range of transparent sol below 30 °C. In the microdomain appeared in the transparent sol state, both block chains of PNIPA and PEG are swollen by water; (ii) for the NE solution of polymer concentration Wp > 3.5% (w/v), corresponding to opaque gel above 30 °C, a percolated structure, i.e., network-like domain is formed by NE as a result of macrophase separation due to dehydration of the PNIPA chains. As the temperature increases toward 40 °C, the network domain is squeezed along a direction parallel to the NE interface, which leads to increase of the interfacial thickness given by swollen PEG chains and to the macroscopic synerisis behavior.  相似文献   

3.
On the structure of poly(N-isopropylacrylamide) microgel particles   总被引:3,自引:0,他引:3  
This investigation presents a study of the internal structure of poly(NIPAM/xBA) microgel particles (NIPAM and BA are N-isopropylacrylamide and N,N'-methylene bisacrylamide, respectively). In this study, x is the wt % of BA used during microgel synthesis. Two values of x were used to prepare the microgels, 1 and 10. The microgel dispersions were investigated using photon correlation spectroscopy (PCS) and small-angle neutron scattering (SANS). These measurements were made as a function of temperature in the range 30-50 degrees C. Scattering maxima were observed for the microgels when the dispersion temperatures were less than their volume phase transition temperatures. The SANS data were fitted using a model which consisted of Porod and Ornstein-Zernike form factors. The analysis showed that the macroscopic hydrodynamic diameter of the microgel particles and the submicroscopic mesh size of the network are linearly related. This is the first study to demonstrate affine swelling for poly(NIPAM/xBA) microgels. Furthermore, the mesh size does not appear to be strongly affected by x. The data suggest that the swollen particles have a mostly homogeneous structure, although evidence for a thin, low segment density shell is presented. The study confirms that poly(NIPAM/xBA) microgel particles have a core-shell structure. The shell has an average thickness of approximately 20 nm for poly(NIPAM/1BA) particles which appears to be independent of temperature over the range studied. The analysis suggests that the particles contained approximately 50 vol % water at 50 degrees C. The molar mass of the poly(NIPAM/1BA) microgel particles was estimated as 6 x 10(9) g mol(-1).  相似文献   

4.
 It has been shown that the swelling of poly-N-isopropyl-acrylamide (poly-NIPAM) microgel particles can be controlled by the addition of alcohols, in addition to the previously observed effect of temperature. The degree of swelling is also controlled by the amount of cross-linker within the microgel particles. At 25 °C, poly-NIPAM microgel particles collapse upon the addition of MeOH, EtOH and 2-PrOH to a minimum size and then, reswell again as the alcohol-rich region is approached. This trend was also observed for poly-NIPAM microgel particles dispersed in 2-PrOH/water mixtures upon heating to 50 °C. The particles, dispersed in either water or alcohol/water mixtures were found to be stable to flocculation between 25 °C and 50 °C. Received: 27 February 1997 Accepted: 5 August 1997  相似文献   

5.
Recent experimental studies [Z. Wu, B. Zhou, Z.B. Hu, Phys. Rev. Lett. 90 (2003) 048304] on an uncharged aqueous poly-N-isopropylacrylamide (PNIPAM) dispersion have shown that this microgel system is sensitive to temperature. This system was also experimentally found to be modeled quite well by microgel particles interacting via a hard-sphere repulsive plus an inverse power (temperature-dependent) attractive potential. To understand theoretically this thermally responsive PNIPAM dispersion, we apply a novel approach [G.F. Wang, S.K. Lai, Phys. Rev. E 70 (2004) 051402] to calculate its thermodynamic phase diagram. Differing from the conventional method in which the boundaries of the coexisting phases are the ultimate target, the present work places emphasis on crosshatching colloidal domains which include the homogeneous phase (gas, liquid or solid), two coexisting phases and perhaps also multi-phases in coexistence. Strategically, this was done by treating the coexisting phases as one composite system whose Helmholtz free energy density is written as the sum of constituent free energy densities each of which is weighed by its respective volume proportion. We show here that by minimizing the composite system's free energy density the phase-diagram domains can all be determined in addition to the phase boundaries customarily obtained by imposing the conditions of equal pressure and equal chemical potential. Also, we present the theoretically predicted phase diagram of PNIPAM dispersion and compare it with the one observed experimentally.  相似文献   

6.
The synthesis of temperature-responsive microgels of poly(N-isopropylacrylamide) (PNIPAM) was first reported in 1986 and, since then, there have been hundreds of publications describing the preparation, characterization and applications of these systems. This paper reviews the developments concerning the study of the structure of PNIPAM-based microgels performed over the last years using small angle neutron scattering (SANS) and also the investigations of the polymer-chain dynamics within the microgels carried out with incoherent elastic and quasielastic neutron scattering, and pulse field gradient nuclear magnetic resonance (PFG-NMR) techniques. Furthermore, the self-diffusion coefficient of the water molecules within the microgel, determined by means of solvent relaxation NMR, is also discussed as a function of the polymer volume fraction of the microgels.  相似文献   

7.
Investigation of the thermo-reversible properties of different poly(N-isopropyl acrylamide) samples, including microgels and block copolymers, with a combination of methods such as electron microscopy, dynamic light scattering, analytical ultracentrifugation, electrophoresis and ultrasound resonator technology allows comprehensive characterisation of the phase transition. By the combination of methods, it was possible to show that the precipitated polymer phase contains at 40 °C between 40 and 50 vol.% of water. Besides free bulk water, there is also bound water that strongly adheres to the N-isopropyl acrylamide units (about 25 vol.%). Ultrasound resonator technology, which is a non-sizing characterisation method, revealed for the microgel particles two more temperatures (at about 35 and between 40 °C and 50 °C depending on the chemical nature) where characteristic changes in the ultrasound attenuation take place. Moreover, the experimental data suggest that the phase transition temperature is related to surface charge density of the precipitated particles.  相似文献   

8.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

9.
Monodisperse microgel latex with homogeneous cross-link density distribution within the particles was prepared by feeding the monomer and cross-linker into the reaction mixture in a regulated way during the polymerization. To determine the appropriate monomer feeding parameters, the kinetics of the particle formation was investigated by HPLC. The swelling and optical characteristics of the prepared homogenously cross-linked microgel particles were compared to the properties of inhomogenously cross-linked microgels prepared by the normal precipitation polymerization method. The distribution of the cross-link density within the particles inserts a great influence on the characteristics of the system. The degree of swelling of the homogeneous particles is significantly higher than that of the heterogeneous microgel particles. Furthermore, at room temperature the pNIPAm latex containing the homogeneously cross-linked particles is transparent, while the heterogeneously cross-linked particles form a highly turbid system at the same 0.1 wt% concentration.  相似文献   

10.
Conversion versus time curves were measured for poly(N-isopropylacrylamide) microgel latexes prepared by polymerization in water with sodium dodecyl sulfate, SDS. Polymerization rates increased with temperature with methylenebisacrylamide crosslinking monomer consumed faster thanN-isopropylacrylamide. The particle diameter decreased with increasing concentrations of SDS in the polymerization recipe and there was evidence that the rate of polymerization increased somewhat with SDS concentration. Particle formation occurred by homogeneous nucleation as micelles were absent.Comparison of particle size distributions from dynamic light scattering to those from a centrifugal sizer led to the conclusion that larger particles within a specific latex were less swollen with acetonitrile than were the smaller ones. This was interpreted as evidence for the polymer in larger particles having a higher crosslink density. Particle swelling was estimated from swelling ratios defined as the particle volume at 25 °C divided by the volume at 50 °C. In the absence of crosslinking poly(N-isopropylacrylamide) linear chains would disolve at 25 °C. The swelling results indicated that the average crosslink density in the particles decreased with conversion. This was explained by the observation that the methylenebisacrylamide was consumed more quickly and is typical of crosslinking in emulsion polymerization where polymer particles have high polymer concentrations at their birth.  相似文献   

11.
Poly(N-isopropylacrylamide) (PNIPAM) microgel particles labeled with a fluorescent monomer 4-N-(2-acryloyloxyethyl)-N-methylamino-7-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole (DBD-AE) were prepared by emulsion polymerization under various crosslinker concentrations. The thermo-responsive behavior and the microenvironment of the microgel particles were studied in water by turbidimetric and fluorescence analyses. For the microgel particles prepared under the crosslinker concentration of 1 mM, the turbidity began to increase at ca. 32.5 degrees C, but the relative fluorescence intensity dramatically increased and the wavelength at the maximum fluorescence intensity (lambda(max)) was dramatically blue-shifted both at ca. 31.5 degrees C with increasing the temperature, suggesting the hydrophobicity around the DBD-AE unit was dramatically increased and the subsequent shrinking of the microgel particles occurred. As the crosslinker concentration increased from 0.5 to 20 mM, the transition temperature determined by turbidimetric analysis was constant upto 2 mM, rose between 2 and 10 mM, leveled off above 10 mM, and was ca. 34 degrees C at 20 mM. The temperature-induced microenvironmental change inside the microgel particles was also reduced at high crosslinker concentrations. The results obtained from the fluorescence of the DBD-AE unit and another fluorescent monomer unit 3-(2-propenyl)-9-(4-N,N-dimethylaminophenyl)phenanthrene (VDP) suggested that the heterogeneity inside the microgel particles prepared under the crosslinker concentration of 20 mM became high.  相似文献   

12.
13.
Osmotic de-swelling of polystyrene microgel particles   总被引:1,自引:0,他引:1  
  相似文献   

14.
The electrophoretic mobility (μ) of tunable surface charge poly(N-isopropylacrylamide) microgel particles (PNIPAM) was measured vs pH, using different anionic buffers. Two minima, just at the buffers’ pK values, were found for the μ-pH curve. The preferential penetration of the small counterions into the soft-charged shell explains the electrokinetic charge reduction. For pH values higher than the pK, the charge screening leads to electrostatic repulsions among coions. It pushes them towards the particles; thus, balancing the global ionic distribution.  相似文献   

15.
The addition of cetylpyridinium chloride (CPC) to aqueous dispersions of poly(N-isopropylacrylamide) [poly(NIPAM)] and poly(N-isopropylacrylamide-co-acrylic acid) [poly(NIPAM-co-AAc)] microgel particles leads to absorption of the CPC into the particles and to corresponding changes in their hydrodynamic diameter. With the latter set of particles there is a strong pH dependence. The dependence of both hydrodynamic diameter and electrophoretic mobility of the microgel particles on the added CPC concentration show a strong correlation with CPC uptake, as obtained from direct CPC absorption measurements. Various mechanisms for CPC absorption into the microgel particles are postulated, including electrostatic, polar, and hydrophobic interactions. A comparison has also been made between the effect of added CPC on the hydrodynamic diameter of free microgel particles in dispersion, determined by dynamic light scattering, and the thickness of adsorbed monolayers of the same microgel particles deposited on cationically modified, oxidized silicon surfaces, as determined from ellipsometry measurements. The trends observed in both cases are broadly similar. This work opens the way for development of microgel layers for controlled uptake and release applications.  相似文献   

16.
The size and shape of ammonium decanoate and ammonium dodecanoate micelles as functions of micellar concentration have been studied using the techniques of small-angle neutron scattering and time-averaged light scattering. The results indicate that the micellar mass of ammonium dodecanoate increases with surfactant concentration. This behaviour can be attributed to the formation of rod-like micelles. A comparison is made with the homologous surface active agent, ammonium decanoate. Received: 27 July 1998 Accepted: 18 August 1998  相似文献   

17.
18.
The thermoresponsive behavior and mechanical properties of nanostructured hydrogels, which consist of poly(acrylamide) nanoparticles embedded in a cross-linked poly(N-isopropylacrylamide) hydrogel matrix, are reported here. Nanostructured hydrogels exhibit a tuned volume phase transition temperature (T VPT), which varies with nanoparticle content in the range from 32 up to 39–40 °C. Moreover, larger equilibrium water uptake, faster swelling and de-swelling rates, and larger equilibrium swelling at 25 °C were obtained with nanostructured hydrogels compared with those of conventional ones. Elastic and Young’s moduli were larger than those of conventional hydrogels at similar swelling ratios. The tuned T VPT and the de-swelling rate were predicted with a modified Flory–Rehner equation coupled with a mixing rule that considers the contribution of both polymers. These behaviors are explained by a combination of hydrophilic/hydrophobic interactions and by the controlled inhomogeneities (nanoparticles) introduced by the method of synthesis.  相似文献   

19.
Hu  Wen-tao  Yang  Hua  Cheng  He  Hu  Hai-qing 《高分子科学》2017,35(9):1156-1164
One-pot polymerization with macroinitiator is supposed to be a robust, facile way to synthesize well-defined coreshell nanoparticles with fixed shell thickness. To testify this, we investigated the temperature-depending morphology evolution of polystyrene(PS) core/poly(N-isopropylacrylamide)(PNIPAM) shell microgel synthesized by one-pot polymerization with PNIPAM-RAFT as macroinitiator in dimethylformamide(DMF) by transmission electron microscopy(TEM), dynamic/static light scattering(DLS/SLS) and small angle neutron scattering(SANS). It is revealed that the microgel has a core-shell structure, i.e., the core is made of pure PS, but the shell is composed of both PNIPAM-RAFT macroinitiator and crosslinked PS. In fact, there are 92.0 wt% D2 O, 6.7 wt% PNIPAM and 1.3 wt% PS in the shell in its aqueous dispersion at 21 °C; therefore, its shell thickness is much larger than the extended chain length of the macroinitiator as revealed by both SANS and DLS observations. Competitive growth of styrene, divinylbenzene and PNIPAM macroinitiator as well as possible chain transfer from amine proton of PNIPAM side chain may lead to the larger shell thickness, compared with the extended chain length of the macroinitiator. Our work can shed light on the real morphology control in one-pot polymerization.  相似文献   

20.
Dispersions of poly(N-isopropylacrylamide) (PNIPAM) microgel thermally gel in the presence of inorganic salts. The in situ-formed hydrogels, with a network of soft particles, represent a new type of colloidal gels. Here, their fractal structures were determined by rheological measurements, using the models of both Shih et al. and Wu and Morbidelli. According to the definition of Shih et al., the colloidal PNIPAM gels fall into the strong-link regime. Yet the calculated fractal dimension of the floc backbone, x, yielded unrealistic negative values, suggesting this model is inapplicable for the present system. The Wu-Morbidelli model gives physically sounder results. According to this model, the strengths of the inter- and intrafloc links are comparable, and the in situ-formed gels are in the transition regime. The fractal dimension, d(f), of the hydrogel decreases from ~2.5 to ~1.8 when the heating temperature increases from 34 to 40 °C. The d(f) values suggest different aggregation mechanisms at different temperatures, that is, a reaction-limited one accompanied by rearrangement at low temperature, a typical reaction-limited one at the intermediate temperature, and a diffusion-limited one at high temperature. With increasing salt concentration, the d(f) of the hydrogel decreases from ~2.1 to ~1.7, suggesting the aggregation mechanism changes from reaction-limited to diffusion-limited. The effects of both temperature and salt concentration can be explained by the changes in the interactions among the microgel particles. The thermogellable PNIPAM microgel dispersions may serve as a model system for the study of heat-induced gelation of globular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号