首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of using neural networks (NNs) to predict the complete thermal and flow variables throughout a complicated domain, due to free convection, is demonstrated. Attention is focused on steady, laminar, two-dimensional, natural convective flow within a partitioned cavity. The objective is to use NN (trained on a database generated by a CFD analysis of the problem of a partitioned enclosure) to predict new cases; thus saving effort and computation time. Three types of NN are evaluated, namely General Regression NNs, Polynomial NNs, and a versatile design of Backpropagation neural networks. An important aspect of the study was optimizing network architecture in order to achieve best performance. For each of the three different NN architectures evaluated, parametric studies were performed to determine network parameters that best predict the flow variables.A CFD simulation software was used to generate a database that covered the range of Rayleigh number Ra = 104–5 × 106. The software was used to calculate the temperature, the pressure, and the horizontal and vertical components of flow speed. The results of the CFD were used for training and testing the neural networks (NN). The robustness of the trained NNs was tested by applying them to a “production” data set (1500 patterns for Ra = 8 × 104 and 1500 patterns for Ra = 3 × 106), which the networks have never been “seen” before. The results of applying the technique on the “production” data set show excellent prediction when the NNs are properly designed. The success of the NN in accurately predicting free convection in partitioned enclosures should help reduce analysis-time and effort. Neural networks could potentially help solve some cases in which CFD fails to solve because of numerical instability.  相似文献   

2.
Local a posteriori estimates of the accuracy of approximate solutions to ill-posed inverse problems with discontinuous solutions from the classes of functions of several variables with bounded variations of the Hardy or Giusti type are studied. Unlike global estimates (in the norm), local estimates of accuracy are carried out using certain linear estimation functionals (e.g., using the mean value of the solution on a given fragment of its support). The concept of a locally extra-optimal regularizing algorithm for solving ill-posed inverse problems, which has an optimal in order local a posteriori estimate, was introduced. A method for calculating local a posteriori estimates of accuracy with the use of some distinguished classes of linear functionals for the problems with discontinuous solutions is proposed. For linear inverse problems, the method is bases on solving specialized convex optimization problems. Examples of locally extra-optimal regularizing algorithms and results of numerical experiments on a posteriori estimation of the accuracy of solutions for different linear estimation functionals are presented.  相似文献   

3.
分析了不可压缩Maxwell流体在震荡矩形截面管道中的非稳定流动问题.利用Fourier变换和Laplace变换作为数学工具,提出了问题的解,该解可以看成稳态解和暂态解之和.大倍数时,暂态消失,解可以表示为稳态解.在极限情况的案例中给出了Newton流体的解.当震荡频率不存在时,得到了Maxwell流体在震荡矩形截面管道中流动问题的解.最后,以图形形式给出不同参数时,矩形管道正弦震荡达到稳态所需要的时间.同时,分别描绘了x和y变化时的速度曲线.  相似文献   

4.
The laminar flamelet concept is used in the prediction of mean reactive scalars in a non-premixed turbulent CH4/H2/N2 flame. First, a databank for temperature and species concentrations is developed from the solutions of counter-flow diffusion flames. The effects of flow field on flamelets are considered by using mixture fraction and scalar dissipation rate. Turbulence-chemistry interactions are taken into account by integrating different quantities based on a presumed probability density function (PDF), to calculate the Favre-averaged values of scalars. Flamelet library is then generated. To interpolate in the generated library, one artificial neural network (ANN) is trained where the mean and variance of mixture fraction and the scalar dissipation rate are used as inputs, and species mean mass fractions and temperature are selected as outputs. The weights and biases of this ANN are implemented in a CFD flow solver code, to estimate mean values of the scalars. Results reveal that ANN yields good predictions and the computational time has decreased as compared to numerical integration for the estimation of mean thermo-chemical variables in the CFD code. Predicted thermo-chemical quantities are close to those from experimental measurements but some discrepancies exist, which are mainly due to the assumption of non-unity Lewis number in the calculations.  相似文献   

5.
A class of regularization methods using unbounded regularizing operators is considered for obtaining stable approximate solutions for ill-posed operator equations. With an a posteriori as well as an a priori parameter choice strategy, it is shown that the method yields the optimal order. Error estimates have also been obtained under stronger assumptions on the generalized solution. The results of the paper unify and simplify many of the results available in the literature. For example, the optimal results of the paper include, as particular cases for Tikhonov regularization, the main result of Mair (1994) with an a priori parameter choice, and a result of Nair (1999) with an a posteriori parameter choice. Thus the observations of Mair (1994) on Tikhonov regularization of ill-posed problems involving finitely and infinitely smoothing operators is applicable to various other regularization procedures as well. Subsequent results on error estimates include, as special cases, an optimal result of Vainikko (1987) and also some recent results of Tautenhahn (1996) in the setting of Hilbert scales.  相似文献   

6.
The most widely used training algorithm of neural networks (NNs) is back propagation (BP), a gradient-based technique that requires significant computational effort. Metaheuristic search techniques such as genetic algorithms, tabu search (TS) and simulated annealing have been recently used to cope with major shortcomings of BP such as the tendency to converge to a local optimal and a slow convergence rate. In this paper, an efficient TS algorithm employing different strategies to provide a balance between intensification and diversification is proposed for the training of NNs. The proposed algorithm is compared with other metaheuristic techniques found in literature using published test problems, and found to outperform them in the majority of the test cases.  相似文献   

7.
This paper presents the new exact analytical solutions for magnetohydrodynamic (MHD) flows of an Oldroyd-B fluid. The explicit expressions for the velocity field and the associated tangential stress are established by using the Laplace transform method. Three characteristic examples: (i) flow due to impulsive motion of plate, (ii) flow due to uniformly accelerated plate, and (iii) flow due to non-uniformly accelerated plate are considered. The solutions for the hydrodynamic flows are special cases of the presented solutions. Moreover, the similar solutions corresponding to Maxwell and Newtonian fluids in the presence as well as absence of a magnetic field appear as the limiting cases of our solutions. The influences of the exerted magnetic field on the flow are also graphically presented and discussed. In particular, graphical results for the Oldroyd-B fluid are compared with those of a Newtonian fluid.  相似文献   

8.
The propagation of a spherical shock wave in a non‐ideal gas with or without gravitational effects is investigated under the action of monochromatic radiation. Similarity solutions are obtained for adiabatic flow between the shock and the piston. The numerical solutions are obtained using the Runge‐Kutta method of the fourth order. The density of the gas is assumed to be constant. The total energy of the shock wave is non‐constant and varies with time. The effects of change in values of non‐idealness parameter, gravitational parameter, shock Mach number, radiation parameter, and adiabatic exponent of the gas on shock strength and flow variables are worked out in detail. It is investigated that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. A comparison is also made between the solutions in the cases of the gravitating and the non‐gravitating media. It is manifested that the gravitational parameter and the radiation parameter have in general opposite behaviour on the flow variables and the shock strength.  相似文献   

9.
In this discussion, a new numerical algorithm focused on the Haar wavelet is used to solve linear and nonlinear inverse problems with unknown heat source. The heat source is dependent on time and space variables. These types of inverse problems are ill-posed and are challenging to solve accurately. The linearization technique converted the nonlinear problem into simple nonhomogeneous partial differential equation. In this Haar wavelet collocation method (HWCM), the time part is discretized by using finite difference approximation, and space variables are handled by Haar series approximation. The main contribution of the proposed method is transforming this ill-posed problem into well-conditioned algebraic equation with the help of Haar functions, and hence, there is no need to implement any sort of regularization technique. The results of numerical method are efficient and stable for this ill-posed problems containing different noisy levels. We have utilized the proposed method on several numerical examples and have valuable efficiency and accuracy.  相似文献   

10.
The objective of this investigation is the development of a reliable methodology allowing the accurate prediction of compressor surge. In this context a centrifugal compressor used in a commercial application with five main and five splitter blades, installed in regular passenger vehicles, is numerically analyzed. For this purpose a CFD analysis is conducted. The steady-state and unsteady secondary flow field is analyzed and studied by a frequency analysis to detect critical oscillations. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This work looks at the heat transfer effects on the flow of a second grade fluid over a radially stretching sheet. The axisymmetric flow of a second grade fluid is induced due to linear stretching of a sheet. Mathematical analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST case) and (ii) prescribed surface heat flux (PHF case). The modelled non-linear partial differential equations in two dependent variables are reduced into a partial differential equation with one dependent variable. The resulting non-linear partial differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence is properly discussed. The series solutions and graphs of velocity and temperature are constructed. Particular attention is given to the variations of emerging parameters such as second grade parameter, Prandtl and Eckert numbers.  相似文献   

12.
The simultaneous effects of transpiration through and tangential movement of a semi-infinite flat plate on the self-similar boundary layer flow driven by uniform shear in the far field is considered. Difficulties with standard shooting techniques are overcome using Crocco variables which also serve to better elucidate the solution structure. The stabilities of dual, triple and even quadruple steady flow solutions encountered in different ranges of plate stretching and wall stress are determined using a linear temporal stability analysis for the self-similar flow.   相似文献   

13.
数据缺损下矩阵低秩逼近问题出现在许多数据处理分析与应用领域. 由于极高的元素缺损率,数据缺损下的矩阵低秩逼近呈现很大的不适定性, 因而寻求有效的数值算法是一个具有挑战性的课题. 本文系统完整地综述了作者近期在这方面的一些研究进展, 给出了基本模型问题的不适定性理论分析, 提出了两种新颖的正则化方法: 元素约束正则化和引导正则化, 分别适用于中等程度的数据缺损和高度元素缺损的矩阵低秩逼近. 本文同时也介绍了相应快速有效的数值算法. 在一些实际的大规模数值例子中, 这些新的正则化算法均表现出比现有其他方法都好的数值特性.  相似文献   

14.
The “inviscid” nature of the asymmetry is demonstrated using the example of the separating unsteady flow of an ideal incompressible fluid around a cylinder which is expanding at a constant velocity, that is, a non-steady-state analogue of steady-state flow around a cone at an angle of attack. An asymmetric flow structure is realized for a symmetrical positioning of the points of separation of the vortex sheets. This is evidence of the secondary role of viscosity, which can manifest itself through an “inverse” effect on the position of the points of separation. New asymmetric solutions and processes by which they arise, which are different from the classical bifurcation of the symmetric solution, are found. Together with an investigation of stability, an analysis of the global pattern of “self-similar” streamlines is carried out in the selection of the “realizable” solutions. The global pattern must correspond to the scheme adopted when constructing the theoretical model.  相似文献   

15.
A Cauchy problem for the Laplace equation in a rectangle is considered. Cauchy data are given for y=0, and boundary data are for x=0 and x=π. The solution for 0<y?1 is sought. We propose two different regularization methods on the ill-posed problem based on separation of variables. Both methods are applied to formulate regularized solutions which are stably convergent to the exact one with explicit error estimates.  相似文献   

16.
B. Bira 《Applicable analysis》2013,92(12):2598-2607
The aim of this paper is to carry out symmetry group analysis to obtain important classes of exact solutions from the given system of nonlinear partial differential equations (PDEs). Lie group analysis is employed to derive some exact solutions of one dimensional unsteady flow of an ideal isentropic, inviscid and perfectly conducting compressible fluid, subject to a transverse magnetic field for the magnetogasdynamics system. By using Lie group theory, the full one-parameter infinitesimal transformations group leaving the equations of motion invariant is derived. The symmetry generators are used for constructing similarity variables which leads the system of PDEs to a reduced system of ordinary differential equations; in some cases, it is possible to solve these equations exactly. Further, using the exact solution, we discuss the evolutionary behavior of weak discontinuity.  相似文献   

17.
In order to understand the normal and pathologic behavior of the human vascular system, detailed knowledge of blood flow and the response of blood vessels is required. In fact the ability to predict the flow hydrodynamics at any site in the vessels can lead to a better understanding of the behavior of blood flow. Simulation can play an important role in understanding the hemodynamic forces. The objective of the present attempt was to simulate the behavior of blood flow in microvessels using computational fluid dynamics (CFD). Numerical analysis is performed using a commercially available CFD package Fluent 6.2 which is based on the finite volume method. A continuum approach is proposed in which fluid structure interaction has been taken into account. Based on limitations imposed by computational resources, a more simplified model based on volume of fluid (VOF) approach is suggested to simulate movements of RBCs in capillaries and also to predict RBCs’ deformation. Three-dimensional incompressible laminar flow fields are obtained by solving continuity and Navier–Stokes equations computationally. It was found that multiphase CFD simulations may give further insight into the dynamic characteristics of blood flow under complex flow conditions.  相似文献   

18.
Inverse and ill-posed problems which consist of reconstructing the unknown support of a source from a single pair of exterior boundary Cauchy data are investigated. The underlying dependent variable, e.g. potential, temperature or pressure, may satisfy the Laplace, Poisson, Helmholtz or modified Helmholtz partial differential equations (PDEs). For constant coefficients, the solutions of these elliptic PDEs are sought as linear combinations of explicitly available fundamental solutions (free-space Greens functions), as in the method of fundamental solutions (MFS). Prior to this application of the MFS, the free-term inhomogeneity represented by the intensity of the source is removed by the method of particular solutions. The resulting transmission problem then recasts as that of determining the interface between composite materials. In order to ensure a unique solution, the unknown source domain is assumed to be star-shaped. This in turn enables its boundary to be parametrized by the radial coordinate, as a function of the polar or, spherical angles. The problem is nonlinear and the numerical solution which minimizes the gap between the measured and the computed data is achieved using the Matlab toolbox routine lsqnonlin which is designed to minimize a sum of squares starting from an initial guess and with no gradient required to be supplied by the user. Simple bounds on the variables can also be prescribed. Since the inverse problem is still ill-posed with respect to small errors in the data and possibly additional ill-conditioning introduced by the spectral feature of the MFS approximation, the least-squares functional which is minimized needs to be augmented with regularizing penalty terms on the MFS coefficients and on the radial function for a stable estimation of these couple of unknowns. Thorough numerical investigations are undertaken for retrieving regular and irregular shapes of the source support from both exact and noisy input data.  相似文献   

19.
The oscillatory character of solutions of partial differential equations is studied by the method of separation of variables; an ill-posed boundary value problem for a fourth-order polyharmonic equation, where the boundary conditions are given on two rectangles embedded one in the other, is studied; bounds for conditional stability and regularization are established.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 44, No. 3, pp. 317–323, March, 1992.  相似文献   

20.
Two-dimensional mathematical models for gaseous H2/O2 reactive flows are solved for two geometries: a conical and a parabolic one. Five different physical models are studied: two one-species and three multi-species models (frozen, equilibrium and non-equilibrium flows). In the mathematical model, temperature is used as unknown in the energy equation and velocity is obtained for all speed flows. For all analyses, a non-orthogonal finite volume code was implemented, taking into account first (UDS) and second (CDS) order interpolation schemes and co-located grid arrangement. Model predictions of the pressure distribution and Mach number in the nozzle with a conical geometry, calculated using a CDS scheme, were found to agree well with experimental results. For both geometries, numerical results for apparent orders of convergence agreed well with the asymptotic (expected) ones for one-species flows. Some other analyses were provided for mixture of gases flows; in this case, for frozen flow, the apparent order values tend to the asymptotic ones in all cases; for local equilibrium flow, the use of CDS degenerated the apparent order to unity; this fact can be associated to the use of UDS interpolation scheme in the source term of the energy equation. Numerical solutions, including their error estimates, are provided for UDS and CDS schemes. Their analysis shows that global variables of interest (such as thrust and specific impulse) are less affected by the chosen physical model than are local variables of interest (such as the temperature at the symmetry line).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号