首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through a linkage between Arrow's risk theory and compromise programming we obtain a reliable specification of the metric defining the compromise distance from a point to the ideal point in the n-attribute space.  相似文献   

2.
The multiple criteria decision making (MCDM) methods VIKOR and TOPSIS are based on an aggregating function representing “closeness to the ideal”, which originated in the compromise programming method. In VIKOR linear normalization and in TOPSIS vector normalization is used to eliminate the units of criterion functions. The VIKOR method of compromise ranking determines a compromise solution, providing a maximum “group utility” for the “majority” and a minimum of an individual regret for the “opponent”. The TOPSIS method determines a solution with the shortest distance to the ideal solution and the greatest distance from the negative-ideal solution, but it does not consider the relative importance of these distances. A comparative analysis of these two methods is illustrated with a numerical example, showing their similarity and some differences.  相似文献   

3.
The aim of this paper is to develop a new fuzzy closeness (FC) methodology for multi-attribute decision making (MADM) in fuzzy environments, which is an important research field in decision science and operations research. The TOPSIS method based on an aggregating function representing “closeness to the ideal solution” is one of the well-known MADM methods. However, while the highest ranked alternative by the TOPSIS method is the best in terms of its ranking index, this does not mean that it is always the closest to the ideal solution. Furthermore, the TOPSIS method presumes crisp data while fuzziness is inherent in decision data and decision making processes, so that fuzzy ratings using linguistic variables are better suited for assessing decision alternatives. In this paper, a new FC method for MADM under fuzzy environments is developed by introducing a multi-attribute ranking index based on the particular measure of closeness to the ideal solution, which is developed from the fuzzy weighted Minkowski distance used as an aggregating function in a compromise programming method. The FC method of compromise ranking determines a compromise solution, providing a maximum “group utility” for the “majority” and a minimum individual regret for the “opponent”. A real example of a personnel selection problem is examined to demonstrate the implementation process of the method proposed in this paper.  相似文献   

4.
TOPSIS (technique for order preference by similarity to ideal solution) is a multiple criteria method to identify solutions from a finite set of alternatives based upon simultaneous minimization of distance from an ideal point and maximization of distance from a nadir point. This paper proposes a fuzzy TOPSIS algorithm to solve bi-level multi-objective decision-making (BL-MODM) problems, and in which the objective function at each level are non-linear functions which are to be maximized. The proposed model for getting the satisfactory solution of the BL-MODM problems includes the membership functions for the upper level decision variables vector with possible tolerances, the membership function of the distance function from the positive ideal solution (PIS) and the membership function of the distance function from the negative ideal solution (NIS). A numerical illustrative example is given to clarify the proposed TOPSIS approach of this paper.  相似文献   

5.
In general, weights of decision makers (DMs) play a very important role in multiple attribute group decision-making (MAGDM), how to measure the weights of DMs is an interesting research topic. This paper presents a new approach for determining weights of DMs in group decision environment based on an extended TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method. We define the positive ideal solution as the average of group decision. The negative ideal solution includes two parts: left and right negative ideal solution, which are the minimum and maximum matrixes of group decision, respectively. We give an example to illustrate the developed approach. Finally, the advantages and disadvantages of this study are also compared.  相似文献   

6.
The multiple criteria decision making (MCDM) methods VIKOR and TOPSIS are all based on an aggregating function representing “closeness to the ideal”, which originated in the compromise programming method. The VIKOR method of compromise ranking determines a compromise solution, providing a maximum “group utility” for the “majority” and a minimum of an “individual regret” for the “opponent”, which is an effective tool in multi-criteria decision making, particularly in a situation where the decision maker is not able, or does not know to express his/her preference at the beginning of system design. The TOPSIS method determines a solution with the shortest distance to the ideal solution and the greatest distance from the negative-ideal solution, but it does not consider the relative importance of these distances. And, the hesitant fuzzy set is a very useful tool to deal with uncertainty, which can be accurately and perfectly described in terms of the opinions of decision makers. In this paper, we develop the E-VIKOR method and TOPSIS method to solve the MCDM problems with hesitant fuzzy set information. Firstly, the hesitant fuzzy set information and corresponding concepts are described, and the basic essential of the VIKOR method is introduced. Then, the problem on multiple attribute decision marking is described, and the principles and steps of the proposed E-VIKOR method and TOPSIS method are presented. Finally, a numerical example illustrates an application of the E-VIKOR method, and the result by the TOPSIS method is compared.  相似文献   

7.
ABSTRACT

Owing to the complexity of decision environment, not all the attributes in multiple attribute decision making are quantitative. There are also some qualitative attributes, which are related to the integration of multiple attribute decision making (MADM) and linguistic multiple attribute decision making (LMADM). The specific method for composite multiple attribute decision making (CMADM) problems is crucial for decision maker (DM) to make scientific decision. In this paper, the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method is extended to a Composite Technique for Order Preference by Similarity to an Ideal Solution (CTOPSIS) method to solve the CMADM problems. As the basis of the CTOPSIS method, the distance measure model in linguistic space and in n-dimension linguistic space is generated based on the non-linear mapping. Based on the distance measure in linguistic space, a standard deviation method is taken to get the attribute weight. At the same time, the distance measure models are proposed based on the distance measure in n-dimension linguistic space, which are used to calculate the distance between the alternatives and the positive and negative idea points separately. Furthermore, a CTOPSIS method is generated to solve the CMADM problems. Finally, a numerical example is illustrated to explain the process. And the result shows that the CTOPSIS method is quite practical and more approximate to the real decision making situation.  相似文献   

8.
Real decision problems usually consider several objectives that have parameters which are often given by the decision maker in an imprecise way. It is possible to handle these kinds of problems through multiple criteria models in terms of possibility theory.Here we propose a method for solving these kinds of models through a fuzzy compromise programming approach.To formulate a fuzzy compromise programming problem from a possibilistic multiobjective linear programming problem the fuzzy ideal solution concept is introduced. This concept is based on soft preference and indifference relationships and on canonical representation of fuzzy numbers by means of their α-cuts. The accuracy between the ideal solution and the objective values is evaluated handling the fuzzy parameters through their expected intervals and a definition of discrepancy between intervals is introduced in our analysis.  相似文献   

9.
Considering the fact that, in some cases, determining precisely the exact value of attributes is difficult and that their values can be considered as fuzzy data, this paper extends the TOPSIS method for dealing with fuzzy data, and an algorithm for determining the best choice among all possible choices when the data are fuzzy is also presented. In this approach, to identify the fuzzy ideal solution and fuzzy negative ideal solution, one of the Yager indices which is used for ordering fuzzy quantities in [0, 1] is applied. Using Yager’s index leads to a procedure for choosing fuzzy ideal and negative ideal solutions directly from the data for observed alternatives. Then, the Hamming distance is proposed for calculating the distance between two triangular fuzzy numbers. Finally, an application is given, to clarify the main results developed in the paper.  相似文献   

10.
针对模糊群体多属性决策问题,给出一种基于理想点法(TOPSIS)的多属性决策方法.方法先用三角模糊数的形式表示专家评价值的模糊性和不确定性,而后考虑了专家在不同评价属性中的重要程度和意见的相似度,并将专家意见进行集结得到专家群体关于方案集的模糊决策矩阵,最后定义了三角模糊数形式的正负理想方案,通过计算各方案与正负理想方案的距离以及各方案与理想点的相对接近度,最终确定最优方案.通过实例分析说明了该方法的可行性和有效性.  相似文献   

11.
One of the most difficult tasks in multiple criteria decision analysis (MCDA) is determining the weights of individual criteria so that all alternatives can be compared based on the aggregate performance of all criteria. This problem can be transformed into the compromise programming of seeking alternatives with a shorter distance to the ideal or a longer distance to the anti-ideal despite the rankings based on the two distance measures possibly not being the same. In order to obtain consistent rankings, this paper proposes a measure of relative distance, which involves the calculation of the relative position of an alternative between the anti-ideal and the ideal for ranking. In this case, minimizing the distance to the ideal is equivalent to maximizing the distance to the anti-ideal, so the rankings obtained from the two criteria are the same. An example is used to discuss the advantages and disadvantages of the proposed method, and the results are compared with those obtained from the TOPSIS method.  相似文献   

12.
Uncertain programming is a theoretical tool to handle optimization problems under uncertain environment. The research reported so far is mainly concerned with probability, possibility, or credibility measure spaces. Up to now, uncertain programming realized in Sugeno measure space has not been investigated. The first type of uncertain programming considered in this study and referred to as an expected value model optimizes a given expected objective function subject to some expected constraints. We start with a concept of the Sugeno measure space. We revisit some main properties of the Sugeno measure and elaborate on the gλ random variable and its characterization. Furthermore, the laws of the large numbers are discussed based on this space. In the sequel we introduce a Sugeno expected value model (SEVM). In order to construct an approximate solution to the complex SEVM, the ideas of a Sugeno random number generation and a Sugeno simulation are presented along with a hybrid approach.  相似文献   

13.
Network reliability is a performance indicator of computer/communication networks to measure the quality level. However, it is costly to improve or maximize network reliability. This study attempts to maximize network reliability with minimal cost by finding the optimal transmission line assignment. These two conflicting objectives frustrate decision makers. In this study, a set of transmission lines is ready to be assigned to the computer network, and the computer network associated with any transmission line assignment is regarded as a stochastic computer network (SCN) because of the multistate transmission lines. Therefore, network reliability means the probability to transmit a specified amount of data successfully through the SCN. To solve this multiple objectives programming problem, this study proposes an approach integrating Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). NSGA-II searches for the Pareto set where network reliability is evaluated in terms of minimal paths and Recursive Sum of Disjoint Products (RSDP). Subsequently, TOPSIS determines the best compromise solution. Several real computer networks serve to demonstrate the proposed approach.  相似文献   

14.
This paper proposes a decomposition method for hierarchical generation of α-Pareto optimal solutions in large-scale multi-objective non-linear programming (MONLP) problems with fuzzy parameters in the objective functions and in the constraints (FMONLP). These fuzzy parameters are characterized by fuzzy numbers. For such problems, the concept of α-Pareto optimality introduced by extending the ordinary Pareto optimality based on the α-level sets of fuzzy numbers. The decomposition method is based on the principle of decompose the original problem into interdependent sub-problems. In this method, the global multi-objective non-linear problem is decomposed into smaller multi-objective sub-problems. The smaller sub-problems, which obtained solved separately by using the weighting method and through an operative procedure. All these solution are coordinates in such a way that an optimal solution for the global problem achieved. In addition, an interactive fuzzy decision-making algorithm for hierarchical generation of α-Pareto optimal solution through the decomposition method is developed. Finally, two numerical examples given to illustrate the results developed in this paper.  相似文献   

15.
In this paper we continue our previous study (Zhang and Liu, J. Comput. Appl. Math. 72 (1996) 261–273) on inverse linear programming problems which requires us to adjust the cost coefficients of a given LP problem as less as possible so that a known feasible solution becomes the optimal one. In particular, we consider the cases in which the given feasible solution and one optimal solution of the LP problem are 0–1 vectors which often occur in network programming and combinatorial optimization, and give very simple methods for solving this type of inverse LP problems. Besides, instead of the commonly used l1 measure, we also consider the inverse LP problems under l measure and propose solution methods.  相似文献   

16.
The primary goal of this work is to address the non-linear programming problem of globally minimizing the real valued function xd(x, Tx) where T is presumed to be a non-self mapping that is a generalized proximal contraction in the setting of a metric space. Indeed, an iterative algorithm is presented to determine a solution of the preceding non-linear programming problem that focuses on global optimization. As a sequel, one can compute optimal approximate solutions to some fixed point equations and optimal solutions to some unconstrained non-linear programming problems.  相似文献   

17.
The purpose of this article is to resolve the non-linear programming problem of globally minimizing the real valued function ${x \longrightarrow d(x, Sx)}$ where S is a non-self-mapping in the setting of a metric space with the distance function ‘d’. An iterative algorithm is also furnished to find a solution of such global optimization problems. As a consequence, one can determine an optimal approximate solution to some equations of the form Sx = x.  相似文献   

18.
In multi-objective geometric programming problem there are more than one objective functions. There is no single optimal solution which simultaneously optimizes all the objective functions. Under these conditions the decision makers always search for the most “preferred” solution, in contrast to the optimal solution. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper ??-constraint method has been applied to find the non-inferior solution. A brief solution procedure of ??-constraint method has been presented to find the non-inferior solution of the multi-objective programming problems. Further, the multi-objective programming problems is solved by the fuzzy programming technique to find the optimal compromise solution. Finally, two numerical examples are solved by both the methods and compared with their obtained solutions.  相似文献   

19.
An instance of a p-median problem gives n demand points. The objective is to locate p supply points in order to minimize the total distance of the demand points to their nearest supply point. p-Median is polynomially solvable in one dimension but NP-hard in two or more dimensions, when either the Euclidean or the rectilinear distance measure is used. In this paper, we treat the p-median problem under a new distance measure, the directional rectilinear distance, which requires the assigned supply point for a given demand point to lie above and to the right of it. In a previous work, we showed that the directional p-median problem is polynomially solvable in one dimension; we give here an improved solution through reformulating the problem as a special case of the constrained shortest path problem. We have previously proven that the problem is NP-complete in two or more dimensions; we present here an efficient heuristic to solve it. Compared to the robust Teitz and Bart heuristic, our heuristic enjoys substantial speedup while sacrificing little in terms of solution quality, making it an ideal choice for real-world applications with thousands of demand points.  相似文献   

20.
Consider a closed convex cone C in a Banach ideal space X on some measure space with σ-finite measure. We prove that the fulfilment of the conditions CX + = {0} and C??X + guarantees the existence of a strictly positive continuous functional on X whose restriction to C is nonpositive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号