首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Relative alkali-cation affinity of polyoxyethylene (POE) dodecylethers in gas phase was studied by electrospray ionization (ESI) mass spectrometry using dodecylether-poly-ethoxylate (C(12)EO:n, "n" denotes ethyleneoxide unit number) nonionic surfactants, and possible helical conformations of the cationized molecules were demonstrated. The alkali-cation affinity highly depended on the cation diameters. The mass spectra of C(12)EO:8 cationized by alkali-metal ions were dominated by potassiated molecules. The results indicated that the POE moiety could have specific affinity to K(+) ions based on a host-guest interaction between POE helix and potassium ions. This is very similar to the relationships between 18-crown-6 and K(+). The ESI mass spectra exhibited the multiply cationized C(12)EO:n in addition to the singly cationized molecules. The critical EO unit numbers necessary for producing the multiply-charged cationized molecules also depended on the cation diameters. In addition, the POE surfactants highly preferred alkali cations to proton. The results were strongly supported by molecular mechanics/dynamics calculations. A helical conformation of the POE moiety of C(12)EO:15 including two K(+) ions gave a potential minimum, while a lowest energy structure of the protonated molecule took irregular conformations due to the formation of local hydrogen bonds.  相似文献   

3.
High energy collision-induced dissociation (CID) techniques were applied for structural elucidation of alkali-metal ion adducts of crown ethers. The CID of alkali-metal adducts of tetraglyme and hexaethylene glycol were also evaluated to contrast the fragmentation pathways of the cyclic ethers with those of acyclic analogs. A common fragmentation channel for alkali-metal ion adducts of all the ethers, which results in distonic radical cations, is the homolytic cleavage of carbon-carbon bonds. Additionally, dissociation by carbon-oxygen bond cleavages occurs, and these processes are analogous to the fragmentation pathways observed for simple protonated ethers. The proposed fragmentation pathways for alkali-metal ion adducts of crown ethers result mostly in odd-electron, acyclic product ions. Dissociation of the alkali-metal ion adducts of the acyclic ethers is dominated by losses of various neutral species after an initial hydride or proton transfer. The CID processes for all ethers are independent of the alkali-metal ion sizes; however, the extent of dissociation of the complexes to bare alkali-metal ions increases with the size of the metal.  相似文献   

4.
Electrospray ionization mass spectrometry (ESI-MS) was used to study the binding of selected group II and divalent transition-metal ions by cyclo(Pro-Gly)3 (CPG3), a model ion carrier peptide. Metal salts (CatXn) were combined with the peptide (M) at a molar ratio of 1:10 M/Cat in aqueous solvents containing 50% vol/vol acetonitrile or methanol and 1 or 10 mM ammonium acetate (NH4Ac). Species detected include [M+H]+, [M+Cat-H]+, [M2+Cat]2+, [M+Cat+Ac]+, and [M+Cat+X]+. The relative stabilities of complexes formed with different cations (Mg2+, Ca2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+) were determined from the abundance of 1:1 and 2:1 M/Cat species relative to that of the unbound peptide. The largest metal ions (Ca2+, Sr2+, and Mn2+) formed the most stable complexes. Reducing the buffer concentration increased the overall extent of metal binding. Results show that the binding specificity of CPG3 depends upon the size of the metal ion and its propensity for electrostatic interaction with oxygen atoms. Product ion tandem mass spectrometry of [M+H]+ and [M+Cu-H]+ confirmed the cyclic structure of the peptide, although the initial site(s) of metal attachment could not be determined.  相似文献   

5.
The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.  相似文献   

6.
It is currently important to achieve and understand adjustments of optical properties: "guest cation" induced CT spectral shifts in Prussian Blue are shown to be driven (via its specific effect on the Fe(CN)6 CT-donor entity) by the cation lattice-energy interaction, as inferred from microgravimetry of introduced alkali-metal ions, and from independent solubility correlations for other intercalated cations.  相似文献   

7.
Density functional theory calculation was carried out on cation‐π complexes formed by cations [M = H+, Li+, Na+, K+, Be2+, Mg2+, and Ca2+] and π systems of annelated benzene. The cation‐π bonding energy of Be2+ or Mg2+ with annelated benzene is very strong in comparison with the common cation‐π intermolecular interaction, and the bonding energies follow the order Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+. Similarly, the interaction energies follow the trend 1‐M < 2‐M < 3‐M for all the metal cations considered. These outcomes may be due to the weak interactions of the metal cations with C? H and the interactions of metal cations with π in addition to the nature of a metal cation. We have also investigated on all the possible substituted sites, and find that the metal ion tends to interact with all ring atoms while proton prefers to bind covalently to one of the ring carbons. The binding of metal cations with annelated benzenes has striking effect on nuclear magnetic resonance chemical shifts using the gauge independent atomic orbital method. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

8.
In order to investigate the systematic changes in fragmentation behavior of poly(methyl methacrylate) (PMMA) with increasing molecular weight, alkali-metal cationized PMMA 20-mer, 60-mer and 100-mer were selected for post-source decay (PSD) fragmentation study by matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry. PMMA polymers were cationized with lithium, potassium and cesium cations to explore the influence of the cation size on the fragmentation behavior of the polymers. All PMMA polymers could be fragmented by MALDI-PSD and fragmentation of the MALDI ionized synthetic polymer of molecular weight 10 kDa is reported here for the first time. It was shown that an increasing molecular weight of the PMMA chain required an increase in the size of the cation to improve the intensity and the number of the fragments in the PSD spectrum. Some instrumental parameters had to be optimized prior to a successful PSD analysis of the largest PMMA polymers.  相似文献   

9.
Cluster ions such as [Cat+X+nM](+) (n = 0-4); [Cat-H+nM](+) (n = 1-3); and [2(Cat-H)+X+nM](+) (n = 0-2), where Cat, X, and M are the dication, anion, and neutral salt (CatX(2)), respectively, are observed in electrospray ionization (ESI) mass spectrometry of relatively concentrated solutions of diquat and paraquat. Collision-induced dissociation (CID) reactions of the clusters were observed by tandem mass spectrometry (MS/MS), including deprotonation to form [Cat-H](+), one-electron reduction of the dication to form Cat(+.), demethylation of the paraquat cation to form [Cat-CH(3)](+), and loss of neutral salt to produce smaller clusters. The difference in acidity and reduction power between diquat and paraquat, evaluated by thermodynamical estimates, can rationalize the different fractional yields of even-electron ([Cat-H](+) and its clusters) and odd-electron (mostly Cat(+)) ions in ESI mass spectra of these pesticides. The [Cat+n. Solv](2+) doubly charged cluster ions, where n 相似文献   

10.
The positive-ion mass spectra of twelve organic dyes used as molecular probes were measured using liquid secondary ion mass spectrometry (LSIMS). Nine of the twelve dyes were singly charged cations and the other three were doubly charged cations. The mass spectra of each of the dyes in m-nitrobenzyl alcohol contain abundant signals for the intact cation, C+ (singly charged cation dyes), or for singly-charged forms of the doubly charged cation formed by proton loss, [C2+? H+]+, or halogen counter ion attachment, [C2+ + X?]+. Fragmentation is usually minimal under the conditions used. However, the cations of five of the singly charged compounds appear to undergo charge-remote fragmentation. Collision-induced dissociation experiments on a hybrid mass spectrometer of EBqQ geometry at collision energies up to 300 eV failed to access this fragmentation pathway. In contrast to the LSIMS of many other doubly charged organic compounds, two of the dicationic dyes produced a doubly charged ion of reasonable abundance (2–20%) in the mass spectrum. When glycerol was used as a matrix solvent, the addition of the matrix modifier trifluoroacetic acid increased the abundance of C2+.  相似文献   

11.
A combination of electrospray ionization (ESI), multistage, and high-resolution mass spectrometry experiments are used to examine the gas-phase fragmentation reactions of radical cations of cysteine containing di- and tripeptides. Two different chemical methods were used to form initial populations of radical cations in which the radical sites were located at different positions: (1) sulfur-centered cysteinyl radicals via bond homolysis of protonated S-nitrosocysteine containing peptides; and (2) α-carbon backbone-centered radicals via Siu’s sequence of reactions (J. Am. Chem. Soc. 2008, 130, 7862). Comparison of the fragmentation reactions of these regiospecifically generated radicals suggests that hydrogen atom transfer (HAT) between the α C-H of adjacent residues and the cysteinyl radical can occur. In addition, using accurate mass measurements, deuterium labeling, and comparison with an authentic sample, a novel loss of part of the N-terminal cysteine residue was shown to give rise to the protonated, truncated N-formyl peptide (an even-electron xn ion). DFT calculations were performed on the radical cation [GCG].+ to examine: the relative stabilities of isomers with different radical and protonation sites; the barriers associated with radical migration between four possible radical sites, [G.CG]+, [GC.G]+, [GCG.]+, and [GC(S.)G]+; and for dissociation from these sites to yield b2-type ions.  相似文献   

12.
In a mechanistic study of thermal breakdown of diallyl polymers, six diallyl esters of dicarboxylic acids have been investigated by means of mass spectrometry. A characteristic feature of the fragmentation of these compounds is the low stability of the molecular ions and detachment of the allyl cation, the peak of which is usually the highest in the mass spectrum. In interpreting such an unusual path of fragmentation of esters, quantum-chemical calculations have been carried out in the MINDO/3 approximation; the preferred conformation of the diallyl maleate molecule and the distribution of electron density in this conformation have been determined, and the most stable cyclic structure of the intermediate cation [CH=CH(CO)2OH]+ has been established. The nature of the bridge between the carboxyl groups in diallyl esters of dicarboxylic acids has practically no influence on the direction of fragmentation. The decisive factor in the fragmentation is the electrostatic interaction of charges on the atoms of carbonyl carbon and ester oxygen of the second carboxyl group. A fragmentation scheme with the formation of intermediate cyclic cations is proposed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 3, pp. 300–307, May–June, 1990.  相似文献   

13.
Fatty acids can be collisionally activated as [M ? H + Cat]+, where Cat is an alkaline earth metal, by using tandem mass spectrometry. High-energy collisional activation induces charge remote fragmentation to give structural information. In the full scan mass spectra molecular ions are easily identified, particularly when barium is used as a cationizing agent; ions are shifted to a higher mass, lower chemical noise region of the mass spectrum. Moreover, the isotopic pattern of barium is characteristic, and the high mass defect of barium allows an easy separation of the cationized analyte from any remaining interfering ions (chemical noise), provided medium mass-resolving power is available. An additional advantage is that most of the ion current is localized in [M ? H + Cat]+ species. Structural analysis of fatty acids can be performed when the sample size is as low as 1 ng.  相似文献   

14.
The complexes formed by alkali metal cations (Cat(+) = Li(+), Na(+), K(+), Rb(+)) and singly charged tryptic peptides were investigated by combining results from the low-energy collision-induced dissociation (CID) and ion mobility experiments with molecular dynamics and density functional theory calculations. The structure and reactivity of [M + H + Cat](2+) tryptic peptides is greatly influenced by charge repulsion as well as the ability of the peptide to solvate charge points. Charge separation between fragment ions occurs upon dissociation, i.e. b ions tend to be alkali metal cationised while y ions are protonated, suggesting the location of the cation towards the peptide N-terminus. The low-energy dissociation channels were found to be strongly dependant on the cation size. Complexes containing smaller cations (Li(+) or Na(+)) dissociate predominantly by sequence-specific cleavages, whereas the main process for complexes containing larger cations (Rb(+)) is cation expulsion and formation of [M + H](+). The obtained structural data might suggest a relationship between the peptide primary structure and the nature of the cation coordination shell. Peptides with a significant number of side chain carbonyl oxygens provide good charge solvation without the need for involving peptide bond carbonyl groups and thus forming a tight globular structure. However, due to the lack of the conformational flexibility which would allow effective solvation of both charges (the cation and the proton) peptides with seven or less amino acids are unable to form sufficiently abundant [M + H + Cat](2+) ion. Finally, the fact that [M + H + Cat](2+) peptides dissociate similarly as [M + H](+) (via sequence-specific cleavages, however, with the additional formation of alkali metal cationised b ions) offers a way for generating the low-energy CID spectra of 'singly charged' tryptic peptides.  相似文献   

15.
Stable, long‐lived organic cations are directly transferred by electrospray ionization (ESI) from solution into the gas phase where their collision‐induced dissociations (CID) are studied by tandem mass spectrometry. Three related types of triphenyl carbenium ions are investigated, in which the meta positions are either substituted by methoxy groups or tertiary nitrogen bridges, including tetramethoxyphenylacridinium (TMPA+), dimethoxyquinacridinium (DMQA+), and triazatriangulenium (TATA+) cations. These ions are triangular in shape with increasing degrees of planarity. Fragmentation occurs at the periphery of the triangular molecule, involving the methoxy groups and the substituent of the nitrogen bridge. Each initial precursor cation is an even electron (EE) system and shows competing dissociations into both even (EE) and odd electron (OE) fragment ions. The latter reaction is a breach of the classic ‘even‐electron rule’ in mass spectrometry. While the EE fragment dissociates similar to the precursor, the OE fragment ion shows a rich radical‐induced fragmentation pattern. Two driving forces direct the fragmentation of the EE precursor ion toward OE fragment ions, including the release of stabilized radicals and the extension of the π‐system by increasing planarization of the triangulene core. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Density functional theory calculations were performed at the B3LYP/6‐311++G(d,p) level to systematically explore the geometrical multiplicity and binding strength for the complexes formed by alkaline and alkaline earth metal cations, viz. Li+, Na+, K+, Be2+, Mg2+, and Ca2+ (Mn+, hereinafter), with 2‐(3′‐hydroxy‐2′‐pyridyl)benzoxazole. A total of 60 initial structures were designed and optimized, of which 51 optimized structures were found, which could be divided into two different types: monodentate complexes and bidentate complexes. In the cation‐heteroatom complex, bidentate binding is generally stronger than monodentate binding, and of which the bidentate binding with five‐membered ring structure has the strongest interaction. Energy decomposition revealed that the total binding energies mainly come from electrostatic interaction for alkaline metal ion complexes and orbital interaction energy for alkaline earth metal ion complex. In addition, the electron localization function analysis show that only the Be? O and Be? N bond are covalent character, and others are ionic character. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
In this study, the fragmentation reactions of various N-benzylammonium and N-benzyliminium ions were investigated by electrospray ionization mass spectrometry. In general, the dissociation of N-benzylated cations generates benzyl cations easily. Formation of ion/neutral complex intermediates consisting of the benzyl cations and the neutral fragments was observed. The intra-complex reactions included electrophilic aromatic substitution, hydride transfer, electron transfer, proton transfer, and nucleophilic aromatic substitution. These five types of reactions almost covered all the potential reactivities of benzyl cations in chemical reactions. Benzyl cations are well-known as Lewis acid and electrophile in reactions, but the present study showed that the gas-phase reactivities of some suitably ring-substituted benzyl cations were far richer. The 4-methylbenzyl cation was found to react as a Brønsted acid, benzyl cations bearing a strong electron-withdrawing group were found to react as electron acceptors, and para-halogen-substituted benzyl cations could react as substrates for nucleophilic attack at the phenyl ring. The reactions of benzyl cations were also related to the neutral counterparts. For example, in electron transfer reaction, the neutral counterpart should have low ionization energy and in nucleophilic aromatic substitution reaction, the neutral counterpart should be piperazine or analogues. This study provided a panoramic view of the reactions of benzyl cations with neutral N-containing species in the gas phase.  相似文献   

18.
In context of an analysis of the effect of the central atom E of gaseous radical cations of phenyl pnictogens C(6)H(5)EH(2), E = N (1), P (2), and As (3), the mass spectrometric reactions of phenyl phosphane 2 have been re-investigated by D-labeling and by using methods of tandem mass spectrometry. The 70 eV mass spectrum of 2 shows the base peak for ion [M-2H](*+) and significant peaks for ions [M-H](+), [M-(2C,3H)](+), [M-PH] (*+), and [M-(C,P,2H)](+). Metastable 2(*+) fragments exclusively by loss of H(2), and the investigation of deuterated 2-d(2) shows that excessive H/D migrations occur before fragmentation. Other significant fragment ions in the mass spectrum of 2 arise by losses of C(2)H(2,) P, or HCP from the ion [M-H](+). This mass spectrometric behavior puts the radical cation 2(*+) in between the fragmentation reactions of aniline radical cation 1(*+) (loss of H and subsequent losses of C(2)H(2,) or HCN) and phenyl arsane radical cation 3(*+) (elimination of H(2) and loss of As from ion [M-H](+)). The fragmentation mechanisms of the radical cations 1(*+) -3(*+) and of related ions were analyzed by calculations of the enthalpy of relevant species at the stationary points of the minimum enthalpy reaction pathways using the DFT hybrid functionals UBHLYP/6-311+G(2d,p)//UBHLYP/6-311+G(d). The results show that, in contrast to ionized aniline 1(*+), the reactions of the derivatives 2(*+) and 3(*+) of the heavier main group elements P and As are characterized by an easy elimination of H(2)via a reductive elimination of group C(6)H(5)-E (E = P, As) and by a special stability of bicyclic isomers of 2(*+) and 3(*+). Thus, while 1(*+) rearranges by ring expansion and formation an 7-aza-tropylium cation by loss of H., the increased stability of bicyclic intermediates in the rearrangement of 2(*+) and in particular of 3(*+) results in separate rearrangement pathways. The origin of these effects is the more extended and diffuse nature of the 3p and 4p AO of P and As.  相似文献   

19.
Collision‐induced dissociation of protonated N ,N ‐dibenzylaniline was investigated by electrospray tandem mass spectrometry. Various fragmentation pathways were dominated by benzyl cation and proton transfer. Benzyl cation transfers from the initial site (nitrogen) to benzylic phenyl or aniline phenyl ring. The benzyl cations transfer to the two different sites, and both result in the benzene loss combined with 1,3‐H shift. In addition, after the benzyl cation transfers to the benzylic phenyl ring, 1,2‐H shift and 1,4‐H shift proceed competitively to trigger the diphenylmethane loss and aniline loss, respectively. Deuterium labeling experiments, substituent labeling experiments and density functional theory calculations were performed to support the proposed benzyl cation and proton transfer mechanism. Overall, this study enriches the knowledge of fragmentation mechanisms of protonated N ‐benzyl compounds. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The fragmentation pathways of protonated imine resveratrol analogues in the gas‐phase were investigated by electrospray ionization–tandem mass spectrometry. Benzyl cations were formed in the imine resveratrol analogues that had an ortho‐hydroxyl group on the benzene ring A. The specific elimination of the quinomethane neutral, CH2 = C6H4 = O, from the two isomeric ions [M1 + H]+ and [M3 + H]+ via the corresponding ion–neutral complexes was observed. The fragmentation pathway for the related meta‐isomer, ion [M2 + H]+ and the other congeners was not observed. Accurate mass measurements and additional experiments carried out with a chlorinated analogue and the trideuterated isotopolog of M1 supported the overall interpretation of the fragmentation phenomena observed. It is very helpful for understanding the intriguing roles of ortho‐hydroxyl effect and ion–neutral complexes in fragmentation reactions and enriching the knowledge of the gas‐phase chemistry of the benzyl cation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号