首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A rapid binding test has been developed for the detection of bacteria using polymer-modified magnetic nanoparticles. Polydopamine (PDA) can effectively act as a sorbent even in water solution, and a PDA coating on magnetic nanoparticles (MNPs) was therefore prepared to bind Escherichia coli (E. coli). Albeit non-selective, PDA-modified magnetic nanoparticles (MNPs@PDA) show nearly 100% efficiency in binding E. coli. If E. coli, grown in tryptic soy broth medium, is analyzed by capillary electrophoresis (CE) using phosphate buffer as the background electrolyte, two peaks are found, while a single peak is found with carbonate buffer containing 0.05% of poly(ethylene glycol). Self-polymerization of dopamine on E. coli at pH 9.5 is also feasible. The detection of E. coli is demonstrated by adding quantum dots (QDs) to form a QDs-PDA-E. coli aggregate for better CE analysis.
Figure
Development of Polymer-Modified Magnetic Nanoparticles and Quantum Dots for Escherichia coli Binding Test  相似文献   

2.
Two new pendant armed Schiff base macrocyclic complexes, [MgL1](ClO4)2 (1), and [MgL2](ClO4)2 (2), have been prepared via cyclocondensation of 2,6-diformylpyridine and 2,6-diacetylpyridine with two hexadentate hexaamines, ten and tmen, in the presence of Mg(II) ion. The ligands are 15-membered pentaaza macrocycles having two 2-aminoethyl pendant arms. The newly prepared complexes are investigated by IR, 1H NMR, 13C{1H} NMR, DEPT(135), COSY(H, H) and HMQC spectroscopic methods. The antimicrobial screening of newly prepared complexes, 1 and 2, as well as previously prepared similar complexes, [MgL3](ClO4)2 (3) and [MgL4](ClO4)2 (4), against Escherichia coli, Staphylococcus aureus and candidia albicans showed that the macrocyclic complexes of Mg(II) containing 15-membered pentaaza ring (1, 2 and 3) have no activity. Where as the compound 4, which contain 16-membered pentaaza ring, had remarkable inhibition zone on the culture of S. aureus and E. coli as compared with standard drugs. The 1H and 13C chemical shieldings of gas phase complexes were also studied by the gauge independent atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) methods at the level of density functional theory (DFT). The computed 13C chemical shifts are in reasonably good agreement with the experimental data.  相似文献   

3.
The AIE luminogen tetrakis(2-naphthalenyl)ethene (2-NA 4 E) was synthesized by Barton’s double extrusion diazo-thione coupling method from 2,2′-dinaphthyl thioketone and 2,2′-(diazomethylene)bisnaphthylene in 77 % yield. The structure of 2-NA 4 E was confirmed by its 1H NMR and 13C NMR spectra with full assignments. 2-NA 4 E and its parent tetraphenylethene (Ph 4 E) have been subjected to a comprehensive computational DFT study, in search of their conformational spaces. Seven conformers and two transition states of 2-NA 4 E have been located. Four conformers and one transition state of Ph 4 E have been located. The conformers of 2-NA 4 E and Ph 4 E are not overcrowded, as indicated by the contact distances in the fjord and cove regions. The relative free energies (ΔG 298) of the six most stable conformers of 2-NA 4 E are in the narrow range of 2.3 kJ/mol; they make comparable contributions (12–29 %) to the equilibrium mixture. The energy barriers for the diastereomerization D 2-Z,Z,Z,Z $ \rightleftharpoons $ ? D 2-E,E,E,E via the transition state C 1-Z,E,E,Z and for the enantiomerization C 2-Z,Z,E,E $ \rightleftharpoons $ ? C 2-E,E,Z,Z via the transition state C i -Z,E,Z,E are only 29.8 and 29.0 kJ/mol, respectively, indicating very rapid rates of diastereomerization and enantiomerization at room temperature. The values of naphthalenyl torsion angles and ethenic twist angles in 2-NA 4 E are almost identical to those in the parent Ph 4 E. The previously proposed “bulkiness” of the naphthalenyl substituents and the validity of the restriction of naphthalenyl rotation are challenged. The analysis of the AIE effect in 2-NA 4 E should take into account the intermolecular homochiral and heterochiral interactions between the conformers.  相似文献   

4.
In the present investigation, a series of ferrocene-based Schiff bases 5a?Cm were synthesized by the condensation of various chalcones 3a?Cm with S-benzyl dithiocarbazate in absolute ethanol using catalytic amount of glacial acetic acid, and characterized by element analysis,1H NMR,13C NMR, and IR. The synthesized compounds were screened for their in vitro antimicrobial activity against four bacterias (Staphylococcus aureus ATCC 9144, Bacillus cereus ATCC 11778, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 43288) and two fungals (Aspergillus niger ATCC 9092 and Aspergillus fumigatus ATCC 46645) strains. The Schiff bases 5g, 5h, and 5m against Gram-positive bacterial (E. coli and P. aeruginosa) strains was found to be higher than that for the standard drug. They are potential new drugs in antibacterial activity aspects in further days.  相似文献   

5.
Two isomeric NS2-macrocycles incorporating a xylyl group at ortho (o -L) and meta (m -L) positions were employed and their copper complexes (1?C5) were prepared and structurally characterized. The copper(II) nitrate complexes [Cu(L)(NO3)2] (1: L = o -L, 2: L = m -L) for both ligands were isolated. In each case, the copper center is five-coordinated with a distorted square pyramidal geometry. Despite the overall geometrical similarity, 1 and 2 show the different ligand conformation due to the discriminated packing pattern. Reaction of o -L with copper(II) perchlorate afforded complex 3 containing two independent complex cations [Cu(o -L)(H2O)(DMF)(ClO4)]+ and [Cu(o -L)(H2O)(DMF)]2+; the coordination geometry of the former is a distorted octahedron while the latter shows a distorted square pyramidal arrangement. In the reactions of copper(I) halides (I or Br), o -L gave a mononuclear complex [Cu(o-L)I] (4) with a distorted tetrahedral geometry, while m -L afforded a unique exodentate 2:1 (ligand-to-metal) complex [trans-Br2Cu(m-L)2] (5) adopting a trans-type square-planar arrangement.  相似文献   

6.
Based on the new binuclear gold(I) complex [(AuCl)2(L1)] (1) (L1?=?2,3-bis(diphenylphosphino)maleic anhydride) four new polynuclear compounds were synthesized by reactions of 1 with E(SiMe3)2 (E?=?S, Se). During the formation of these new compounds the initial ligand L1 undergoes various transformations (e.g. substitution, hydration or hydrogenation) leading to the new ligands: trans-2,3-bis(diphenylphosphino)succinic anhydride (L2), 2-diphenylphosphino-3-mercapto-maleic anhydride anion (L3), 2-diphenylphosphino-3-selenolato-maleic anhydride anion (L4) and 2,3-bis(diphenylphosphino)succinic acid (L5). In case of using the sulfur species S(SiMe3)2 a pentanuclear cluster, [Au5(PPh2)3(L3)2] (2), and a 24-nuclear cluster, [Au24S6(PPh2)4(L3)8] (3), could be obtained. With Se(SiMe3)2 the binuclear complex, [(AuCl)2(L2)] (4), and the dodecanuclear cluster, [Au12Se4(L4)4(L5)2] (5), were yielded.  相似文献   

7.
A novel proton transfer compound (H2Ppz)(HDipic)2 (I) obtained from 2-(piperazin-1-yl)ethanol (Ppz) and pyridine-2,6-dicarboxylic acid (H2Dipic) and its Cu(II) complex (H2Ppz)[Cu(Dipic)2] · 6H2O (II) have been prepared and characterized by elemental, spectral (1H and 13C NMR, IR and Uv-Vis) and thermal analyses. Magnetic measurement and single crystal X-ray diffraction methods have also been applied for compound II. The molecular structure of II consists of one 1-(2-hydroxyethyl)piperazine-1,4-diium cation, one bis(pyridinium-2,6-dicarboxylate)Cu(II) anion and six uncoordinated water molecules. In complex II, the copper ion coordinates to two oxygen and one nitrogen atoms of two pyridine-2,6-dicarboxylate molecules forming an octahedral conformation. Furthermore, the synthesised compounds (I and II) were screened for their antimicrobial activities against Gram (?) (Escherichia coli and Pseudomonas aeruginosa) and Gram (+) (Staphylococcusaureus and Bacillus cereus). The results were reported, discussed and compared with the corresponding starting materials (H2Dipic and Ppz).  相似文献   

8.
Some new Schiff bases, (Z)-4-amino-3-((E)-(R-methoxybenzylidene)hydrazono)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L2), R?=?3 (L3) and R?=?4 (L4)), were synthesized by the condensation reactions of 4-amino-3-hydrazinyl-6-methyl-1,2,4-triazin-5(4H)-one (L1) and corresponding methoxybenzaldehyde in a molar ratio 1:1.5 in high yields. The reaction of L2 and L4 with an excess amount of the corresponding aldehydes gave the unsymmetrical bis-Schiff bases (E)-3-((E)-(R-methoxybenzylidene)hydrazono)-4-((E)-R-methoxybenzylideneamino)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L22) and R?=?4 (L44)), respectively. Furthermore, the reaction of L2?CL4 with silver(I) nitrate in a molar ratio 2:1 led to the silver(I)-complexes with the general formula [Ag(Lx)2]NO3 (Lx?=?L2 (2), L3 (3) and L4 (4)). All synthesized Schiff base compounds and complexes were characterized by a combination of IR-, 1H-NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the structures of L2, L4·CH3CN, L22·CH3OH and L44·CH3OH and complexes 2 and 4 were determined by X-ray diffraction studies.  相似文献   

9.
The interaction of the enantiopure (R)- and (S)-1-phenyl-N,N-bis(pyridine-3- ylmethyl)ethanamine ligands, R-L 1 and S-L 1 , with copper(II) chloride followed by addition of hexafluorophosphate resulted in the isolation of the corresponding enantiomeric complexes [Cu(R-L 1 )Cl](PF6) (1), [Cu(S-L 1 )Cl](PF6) (2) and [Cu(S-L 1 )Cl](PF6)??0.5Et2O (3), in which dimerization occurs through two long Cu??????Cl interactions, the ??-chloro bridges being thus strongly asymmetric. The organic ligand is bound to the metal centre via its N3-donor dipyridylmethylamine fragment in a planar fashion, such that each copper centre is in a square planar environment (or distorted square pyramidal with a long axial bond length if the additional interaction is considered). When R,S-L 1 was employed in a parallel synthesis, the similar racemic complex [Cu(R,S-L 1 )Cl](PF6)??0.5MeOH (4) was obtained, in which the L 1 ligands in each dimeric unit have opposite hands. In contrast to the complexes of L 1 , the reaction of Cu(II) chloride with the related ligand, (R)-1-cyclohexyl-N,N-bis(pyridine-3-ylmethyl)ethanamine (R-L 2 ), yielded the mononuclear complex [Cu(R,S-L 2 )Cl2] (5), displaying a distorted square pyramidal coordination geometry. The structure of this product along with its corresponding circular dichroism spectrum revealed that racemisation of the starting R-L 2 ligand has occurred under the relatively mild (basic) conditions employed for the synthesis. A temperature-dependent magnetic studies of the complexes 1, 2 and 5 indicate that a week ferromagnetic interaction is operative in each dicopper core in 1 and 2 with 2J?=?1.2?cm?1. On the other hand, a week antiferromagnetic intermolecular interaction is operative for 5.  相似文献   

10.
We have immobilized living and non-living Escherichia coli (E. coli) bacteria on multiwalled carbon nanotubes (MWCNT) and used such materials as a biosorbent for the separation and preconcentration of copper, cobalt, cadmium and nickel prior to their determination by flame atomic absorption spectrometry (FAAS). E. coli bacteria cells were mixed with MWCNTs in a 1:1 ratio, dried and placed at the tip of a 50-mL syringe. The ions were retained on the sorbent and then eluted by drawing and ejecting back the sample (or standard solution) and an eluent, respectively. The effects of various experimental parameters on the sorption and elution were investigated. The analytes were quantitatively retained (at pH values of 7) and eluted (with 0.5 M nitric acid) with high precision, the RSD being <5%. The performances of the new sorbents were compared using certified reference materials. The sorbent modified with living E. coli has a higher adsorption capacity and displays somewhat better recoveries compared to sorbent based on non-living E. coli. Both sorbents were successfully used for the separation and preconcentration of copper, cobalt, cadmium and nickel prior to their determination by flame atomic absorption spectrometry.
Figure
SEM photograph of (a) living E. coli immobilized on MWCNT and (b) non-living E. coli immobilized on MWCNT  相似文献   

11.
The enantioselective interactions between chiral tetra-amidic receptors and nucleosides have been investigated by the ESI-IT-MS and ESI-FT-ICR-MS methodologies. Configurational effects on the CID fragmentation of diastereomeric [M H 2 ?H?A]?+ aggregates (A?=?2'-deoxycytidine dC, citarabine (ara-C) were found to be mostly offset by isotope effect in [S X 2 ?H?A]?+ (X?=?H, D) differently from the results obtained on the analogues (A?=?cytidine C and gemcitabine G). This result points the involvement of two different nucleoside/tetraamide isoforms. The structural differences of the [M H 2 ?H?A]?+ (A?=?C and G) complexes vs. the [M H 2 ?H?A]?+ (dC and ara-C) ones is fully confirmed by the kinetics of their uptake of the 2-aminobutane enantiomers, measured by FT-ICR mass spectrometry. Indeed, uptake of the 2-aminobutane enantiomers by [M H n ?H?A]?+ (n?=?1,2; A?=?dC and ara-C) complexes is reversible, while that by [M H n ?H?A]?+ (n?=?1,2; A?=?C and G) is not. The most encouraging result concerning the measured fragmentation and kinetic differences between C and ara-C, that are just epimers, indicates the possibility to subtly modulate the non-covalent drug/receptor interactions, through the electronic properties of the 2'-substituent on the nucleoside furanose ring, and furthermore on its three-dimensional position.  相似文献   

12.
The coordination chemistry of a rigid periodinated ligand, 2,3,5,6-tetraiodo-1,4-benzenedicarboxylic acid (H2BDC-I4), with a series of transition metal ions has been explored to afford five new coordination polymers {[M(BDC-I4)(MeOH)4](H2BDC-I4)(MeOH)2} n (M?=?ZnII for 1, CdII for 2, CoII for 3 and MnII for 4) and {[Mn(BDC-I4)(MeOH)4](DMF)} n (5). All these complexes have been characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X-ray crystallography. Single-crystal X-ray diffraction reveals that complexes 1?C4 are isostructural and have a one-dimensional chain structure. Upon the addition of the solvent DMF, the infinite linear chain array in 4 is converted to a 1-D wave-like chain motif in 5 with a different space group ( $ P\overline{1} $ for 4 and P21/c for 5). The difference between structures 1?C4 and 5 can be attributed to the coordination mode of carboxylate changing from trans to cis fashion. The ZnII and CdII complexes 1 and 2 display similar emissions in the solid state, which essentially are intraligand transitions.  相似文献   

13.
The reaction of the tripod ligand hydrotris(N-(2-methylphenyl)-2-thioimidazol-1-yl)borate, Tt with zinc(II) chloride yielded the chloro complex [TtZn–Cl] 1. The hydrolytic reactivity of its hydroxo complex [TtZn–(μ-OH)ZnTt]Cl 2 towards p-nitrophenyl acetate was hampered due to the formation of the stable phenolate complex [TtZn–O–Ar–p-NO2] 3 as a product inhibition. The X-ray structure analysis of complex 3 was determined and showed that its Zn[S3O] coordination sphere includes three thione donors from the ligand Tt and one oxygen donor from the hydrolysed product p-nitrophenolate in an ideally tetrahedral arrangement around the zinc(II) centre.  相似文献   

14.
The effect of energetic γ-radiation on 1H NMR, electronic absorption, ESR spectra, differential thermal analysis (DTA) and solid state dc electrical conductivity of the ligand N-phenyl-2-(2-(phenylamino)acetyl)hydrazine carbothioamide (H2L) and its copper(II) complexes; Cu(HL)(OAc)H2O, Cu(HL)BrH2O and Cu(H2L)2(NO3)2?3H2O before and after γ-irradiation (hereafter referred to as (B), (B 1 ), (B 2 ), (B 3 ) and (A), (A 1 ), (A 2 ), (A 3 ), respectively) has been studied. Electronic spectral bands of the complexes after irradiation exhibited some better resolved shapes with a remarkably higher absorbance, ESR spectrum of complex Cu(HL)BrH2O (B 2 ) before irradiation showed isotropic spectrum with g iso = 2.075 however, after irradiation (A 2 ) displayed axial ESR spectrum with g  > g  > 2.0023 and d (x2?y2) ground state. DTA of the compounds reveals that γ-irradiation induced generation of new peaks as well as changes in the peak intensities. Solid state dc electrical conductivity for complexes was investigated before and after γ-irradiation. Complexes were found to be semiconductors, the activation energies (E a) were calculated for the complexes by using the Arrhenius plot.  相似文献   

15.
The reactions of 3(5)-(4-methoxyphenyl)-5(3)-phenyl-1H-pyrazole (L 1 ) with nitric acid and 5-(4-benzyloxyphenyl)-3-(furan-2-yl)-1H-pyrazole(L 2 ) with hydrochloric acid produced [HL 1 · NO3] (Salt-1) and [HL 2 · Cl] (Salt-2). The structures of Salt-1 and Salt-2 were determined by single crystal X-diffraction. In Salt-1, HL 1 showed [2 + 2] binding of NO3 ? ions in the solid state to form dimer architecture with R 1 2 (4) and R 4 4 (14) graph sets. An anion directed one-dimensional anion-assisted helical chain with active participation of the chloride ion and protonated pyrazole via N–H···Cl hydrogen bonding in Salt-2. In addition, the protonated HL 2 molecules interacted with each other through weak C–H···π interactions resulting in the formation of another one-dimensional helical chain.  相似文献   

16.
The interaction of Cu(II), Fe(III) and Co(III) with 6,6,13-trimethyl-13-amino-1,4,8,11-tetraazacyclotetradecane (L 3 ) incorporating a pendent amine group has led to isolation of the new octahedral complexes [Cu(HL 3 )(ClO4)2]Cl·H2O (1), [Fe(L 3 )Cl](S2O6)·H2O (2), [Co(L 3 )Cl](ClO4)1.5Cl0.5·0.25H2O (3), [Co(HL 3 )Cl2](ClO4)2·H2O (4) and [Co(L 3 )Cl]2(S2O4)(ClO4)2 (5). In (1) the copper ion occupies the macrocyclic cavity of protonated (–NH3 +) L 3 which is present in its trans-III configuration; weakly bound ClO4 ? ligands occupy the axial positions. The X-ray structure of (2) showed that Fe(III) occupies the N4-macrocyclic cavity of L 3 in a trans-III configuration, with the pendent amine group binding in an axial position. The remaining axial position is occupied by a Cl? ligand. Chromatography of the product obtained from the reaction of Na3[Co(CO3)3] with L 3 yielded three fractions. Fraction 1 yielded crystals (3) composed of three crystallographically independent species incorporating cations of type [Co(L 3 )Cl]2+ with very similar structures; in each case the macrocyclic ring nitrogens of L 3 are bound to the Co(III) in an asymmetric cis-fashion. Fraction 2 yielded the trans-III octahedral cationic complex (4) incorporating L 3 in its protonated form. The Co(III) complex (5) from fraction 3 shows a different coordination arrangement to the products from fractions 1 or 2. The macrocyclic ring coordinates in its trans-III form, but the axial sites in this case are occupied by the pendent-NH2 group and a Cl? ligand.  相似文献   

17.
One-electron oxidation of 2-alkyl-1,4-dimethoxybenzenes 1a-f (2-alkyl=Me, Et, i-Pr, cy-C3H5CH2, PhCH2 and t-Bu) by 4-nitrobenzoyl peroxide 2 and pentaflurobenzoyl peroxide 3 was proved by the observation of great acceleration of decomposition of the peroxides at room temperature, the detection of the corresponding radical cations 1 +? a-f and product analysis. The product studies have disclosed that under the conditions employed (in acetonitrile at 40°C), the reaction pathways of the radical cations are greatly dependent on the nature of 2-alkyl substituents: Ring-4-nitrobenzoloxylation product at C 5 and C 6 were obtained exclusively in the reactions of the donors with aliphatic 2-alkyl substituents bearing at least one α-hydrogen atom, such as 1a, 1b, 1c and 1d; whereas in the case of 1e (with 2-benzyl group), both ring-substitution at C 5 (4e) and C 6 (5e) and deprotonation/4-nitrobenzoloxylation products 8e were isolated; from the donor without α-hydrogen atom, 1f, de-t-butylation products 12 and t-butyl 4-nitrobenzoate 13 were incorporated with ring-substitution at C 5 (4f) and C 6 (5f). Furthermore, the product distribution (4 over 5) is also affected by the bulkiness of 2-alkyl group. For all the electron-transfer reactions, large amounts of the benzoic acid (4-NO2-C6H4COOH or C6F5COOH) were generated and trace amounts of de-methylation product (2-alkyl-1,4-benzoqinones 6) were also detected by 1H NMR.  相似文献   

18.
Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.  相似文献   

19.
Binuclear complexes of Sm(III), Eu(III), Gd(III), Tb(III), and Dy(III) nitrates with 4,4,10,10-tetramethyl-1,3,7,9-tetraazospiro[5.5]undecane-2,8-dione (C11H20N4O2, SC)—[Sm(NO3)3(SC)(H2O)]2(I), [Eu(NO3)3(SC)(H2O)]2 (II), [Gd(NO3)2(SC)(H2O)3)]2(NO3)2 (III), [Tb(NO3)3(SC)(H2O)]2 (IV), [Dy(NO3)3(SC)(H2O)]2 (V), are synthesized, and their X-ray diffraction analyses are carried out. The crystals of complexes I–V are monoclinic: space group P21/n for III and P21/c for I, II, IV, and V. In centrosymmetric coordination complexes II, III, IV, and V, the Ln atoms are coordinated by two O(1) and O(2) atoms of two molecules of the SC ligands bound by a symmetry procedure (1 ? x, ?y, 1 ? z), three bidentate nitrate anions, and a water molecule. The coordination numbers of the metal atoms are equal to 9, and the coordination polyhedra are considerably distorted three-capped trigonal prisms, whose bases include the O(1), O(2), O(12) and O(3), O(7), O(9) atoms. The dihedral angle between the bases of the prism is 18°, and that between the mean planes of the side faces is 55°–71° for I, 17° and 55°–71° for II, 16° and 55°–70° for IV, and 16° and 55°–70° for V. The Sm...Sm distance in complex I is 9.44 Å, Eu...Eu in II is 9.42 Å, Tb...Tb in IV is 9.36Å, and Dy...Dy in V is 9.36Å. The gadolinium atom in complex III is coordinated by two oxygen atoms of two ligand molecules bound by a symmetry procedure (?x, ?y + 1, ?z + 1), two bidentate nitrate anions, and three water molecules. One of the nitro groups in compound III is localized in the external coordination sphere of the metal. The coordination number of gadolinium is 9, and the coordination polyhedron is a significantly distorted three-capped trigonal prism, whose base includes the O(1), O(2), O(7) and O(4), O(5), O(9) atoms. The dihedral angle between the bases of the prism is 22.8°, and that between the mean planes of the side faces is 53°–72°. The Gd...Gd distance in complex III is 9.17 Å.  相似文献   

20.
The potentially tridentate ligands 4-(6-(pyridin-4-yl)pyridin-2-yl)pyridine (4) and 3-(6-(pyridin-3-yl)-pyridin-2-yl)pyridine (5) have been prepared and characterized. From the self-assembly of 4 or 5 and 2,9-bis[trans-Pt(PEt3)2(NO3)]phenanthrene (6), two supramolecular platinum-based macrocycles with rhomboid (7) and overlapped double rhomboid (8) structures have been constructed. Compounds 7 and 8 are formed in different shapes due to the different nitrogen positions (meta and para) of the ligands 4 and 5, respectively. Both supramolecules are characterized by multinuclear NMR and electrospray ionization mass spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号