首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel waterborne polyurethane/flower-like ZnO nanowhiskers (WPU/f-ZnO) composite with different f-ZnO content (0-4.0 wt%) was synthesized by an in-situ copolymerization process. The f-ZnO consisting of uniform nanorods was prepared via a simple hydrothermal method. In order to disperse and incorporate f-ZnO into WPU matrix, f-ZnO was modified with γ-aminopropyltriethoxysilane. Morphology of f-ZnO in WPU matrix was characterized by scanning electron microscope. The properties of WPU/f-ZnO composites such as mechanical strength, thermal stability as well as water swelling were strongly influenced by the f-ZnO contents. It was demonstrated that appropriate amount of f-ZnO with good dispersion in the WPU matrix significantly improved the performance of the composites. The mechanical property was enhanced with an increase of f-ZnO content up to the optimum content (1 wt%) and then declined. Incorporation of f-ZnO enhanced the water resistance of the composites remarkably. It was amazing to observe that the thermal degradation temperatures of the composites initially decreased significantly and then leveled off with content increase of f-ZnO, which was different from the results of other WPU composite systems reported. Antibacterial activity of WPU/f-ZnO composite films against Escherichia coli and Staphylococcus aureus was also tested. The results revealed that the antibacterial activity enhanced with the increasing f-ZnO content, and the best antibacterial activity was obtained at the loading level of 4.0 wt% f-ZnO.  相似文献   

2.
The vinyl group terminated water-borne polyurethanes (WPU) with different DMPA content were prepared. Subsequently the core-shell polyurethane/polyacrylate (PUA) composite emulsions were synthesized by soap-free emulsion copolymerization. The WPU as sole surfactant was used in copolymerization, and the lowest surface tension could be achieved to 38.8?mN m?1. Furthermore, the final conversion of acrylic monomer was reached to 98% in the case of WPU reactive seed. The FTIR-ATR indirectly confirmed the core-shell structure of PUA, simultaneously combined with DSC results found that the compatibility of WPU and PA was enhanced by growing grafting efficiency. The TEM results further indicated that the amount of DMPA in WPU had a great significant role in polymerization and final morphology structure. The PUA composite particles changed from scattered structure, core-shell structure to multi-core structure with increasing DMPA content. Correspondingly, the reinforcing and toughening effects were also found in PUA films with the increase content of DMPA by tensile testing.  相似文献   

3.
李洁华  谭鸿 《高分子科学》2016,34(6):679-687
In this study, to improve hemocompatibility of biomedical materials, a waterborne polyurethane (WPU)/heparin release coating system (WPU/heparin) is fabricated via simply blending biodegradable WPU emulsions with heparin aqueous solutions. The surface compositions and hydrophilicity of these WPU/heparin blend coatings are characterized by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and water contact angle measurements. These WPU/heparin blend coatings show effectively controlled release of heparin, as determined by the toluidine blue method. Furthermore, the biocompatibility and anticoagulant activity of these blend coatings are evaluated based on the protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), thrombin time (TT), hemolysis, and cytotoxicity. The results indicate that better hemocompatibility and cytocompatilibity are obtained due to blending heparin into this waterborne polyurethane. Thus, the WPU/heparin blend coating system is expected to be valuable for various biomedical applications.  相似文献   

4.
The nature creates many biomaterials such as spider silk which exhibits a combination of stiffness, strength and toughness. However, most of synthetic unfilled materials suffer from a trade-off between toughness and stiffness. Inspired by the structure of spider silk but beyond it, we proposed a novel molecular design to achieve transparent unfilled waterborne polyurethane (WPU) with simultaneously enhanced stiffness (280.9 MPa), tensile strength (25.1 MPa) and toughness (140.0 MJ/m3) as well as good elasticity (710%). The designed WPU comprised homogeneous continuous phase (soft segments) and diverse H-bonds (hard segments) dispersed in it. The increase of rigid molecular chain content and H-bonds contributed to the high stiffness of WPU. Furthermore, the mismatch of stiffness between hard domains and soft segments might promote crack deflection and branching, which endowed the robust WPU with fracture energy of 81.16 kJ/m2. The robust WPU film could be healed to recover most of its original mechanical properties (strength for 24.4 MPa and elongation for 610%) under heating. In addition, the WPU films demonstrated good antibacterial performance against Staphylococcus aureus and Escherichia coli after chlorination.  相似文献   

5.
Novel waterborne polyurethane (WPU) was prepared and coated on nylon 12 (Ny12) and fullerene-C60 (Full-C60, 1–10 wt%) composite films using simple dip coating technique. In Ny12/Full-C60 composite, fullerene nanoparticles were dispersed in a wavy layered pattern, whereas coated WPU/Ny12/Full-C60 films depicted uniform pattern of non-overlapping scales. WPU/Ny12/Full-C60 1–10 showed higher values of tensile strength and modulus, 91.4–98.1 MPa and 52.2–57.9 GPa, respectively. In WPU/Ny12/Full-C60 1–10, maximum degradation temperature was increased to 598°C and char yield to 35%. Increasing fullerene content from 1 to 10 wt% decreased maximum peak heat release rate from 209 to 132 kW m?2, i.e., 53% reduction in flammability compared to WPU.  相似文献   

6.
Experimental investigations on the hydrophobic modification of SPG membranes and the preparation of monodisperse W/O (water-in-oil) emulsions using the modified membranes were carried out. Effects of the osmotic pressure of disperse phase, the average pore size of membranes, emulsifier concentrations in continuous phase and the transmembrane pressure on the average size, size distribution and size dispersion coefficient of emulsions were systematically studied. The stability of W/O emulsions was also investigated. The results showed that SPG membranes took on excellent hydrophobicity through the modification by silane coupler reagent (octyltriethoxysilane) or by silicone resin (polymethylsilsesquioxane). Monodisperse W/O emulsions with size dispersion coefficient of about 0.25, which meant high monodispersity, were successfully prepared by using the hydrophobically modified SPG membranes with average pore sizes of 1.8, 2.0, 2.5, 4.8 and 11.1 microm. When the osmotic pressure was lower than 0.855 MPa, the average size of emulsions was gradually increased while the size dispersion coefficient delta gradually decreased with the osmotic pressure; when the osmotic pressure was higher than 0.855 MPa, both the coefficients kept unvarying. When kerosene was saturated with disperse phase in advance, the average size of emulsions became larger and the monodispersity of emulsions was slightly better than that prepared using unsaturated kerosene. The smaller the pore size of SPG membranes was, the better the monodispersity of the W/O emulsions. The average size and size dispersion coefficient delta were nearly independent on the emulsifier concentrations when the PGPR concentration was in the range from 0.5 to 5.0 wt%, whereas both of them slightly increased as the PGPR concentration was below 0.5 wt%. The effect of the transmembrane pressure on size distributions was slight. Both the average size and size dispersion coefficient delta slightly increased to some extent with the increase of the transmembrane pressure in the experimental range. The stability of the W/O emulsions was dependent on the storage time. The mean size of W/O emulsions decreased gradually with the increase of storage time at the first 35 days, and then kept constant; while the size dispersion coefficient of W/O emulsions was nearly not changed.  相似文献   

7.
A procedure was developed for the synthesis of hydrophobic silver nanoparticles with an average size of 4 nm in two-phase water-organic emulsions. The physical properties of the obtained silver organosol were studied by molecular spectroscopy and electron microscopy. It was found that the synthesized silver nanoparticles had a specific surface of 60–110 m2/g. It was shown that chemically modified silver nanoparticles can be used as an adsorbent for preconcentrating polycyclic aromatic hydrocarbons (using pyrene as an example) from dilute n-hexane solutions followed by luminescence determination at room temperature.  相似文献   

8.
In this study, we present the first practical evaluation for the corrosion protection effect of waterborne polyurethane (WPU)/Na+-montmorillonite (Na+-MMT) clay nanocomposite coating. Typically, a series of waterborne polyurethane (WPU)/Na+-montmorillonite (Na+-MMT) clay nanocomposite materials have been successfully prepared by effectively dispersing the inorganic nanolayers of commercially purified Na+-MMT clay in WPU matrix through direct aqueous solution dispersion technique. First of all, WPU was prepared by polymerizing PCL, DMPA and H12MDI, followed by characterized by nuclear magnetic resonance (1H NMR), Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). Subsequently, the as-prepared PU/Na+-MMT clay nanocomposite (Na+-PCN) materials were subsequently characterized by FTIR, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM).PCN materials in the form of coating at low Na+-MMT clay loading up to 3 wt% coated on the cold-rolled steel (CRS) coupons were found to exhibit superior corrosion protection effect over those of neat WPU based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance in 5 wt% aqueous NaCl electrolyte. Effects of the material composition on the gas permeability, thermal stability and optical clarity of neat WPU along with a series of Na+-PCN materials, in the form of coating and free-standing film, were also studies by gas permeability analyzer (GPA), thermogravimetric (TGA), differential scanning calorimetry (DSC) and ultraviolet UV-visible transmission spectroscopy, respectively. As control experiments, a series of PU/organo-MMT nanocomposite (denoted by organo-PCN) materials were also prepared for comparative studies.  相似文献   

9.
Degummed silk filament was pulverized with a home‐made machine to obtain silk fibroin (SF) powder, and the structure, morphology, and particle size of the SF powder were investigated. The individual spherical particles and aggregates with different morphology of silk fibroin coexisted in water. A waterborne polyurethane (WPU) aqueous dispersion was blended with the SF powder to prepare novel blended materials with improved physical properties. The average particle size and zeta potential of the WPU/SF aqueous dispersions were characterized. The result showed that the WPU/SF dispersion with higher SF content exhibited a less negative zeta potential and a larger average particle size. Furthermore, the effect of SF content on the morphology, miscibility, and mechanical properties of the resulting blended films was studied by scanning electron microscopy, wide‐angle X‐ray diffraction, dynamic mechanical thermal analysis, and tensile testing. The films showed an improved Young's modulus and tensile strength from 0.3 to 33.8 MPa, and 0.6 to 5.2 MPa, respectively, with the increasing of SF up to a content of 26 wt %. The negative charges in the periphery and the small particle size made a good effort on dispersing SF powder into the WPU matrix as small aggregates, and the SF powder led to the efficient strengthening of WPU materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 940–950, 2010  相似文献   

10.
Unique nanocomposites consisting of poly(silicic acid) nanoparticles (PNs) and waterborne polyurethane (WPU) were prepared. The aliphatic WPU prepared in this study was end‐capped with a silanol group, which could react with PNs via a sol–gel process. PNs were modified with phenyltrimethoxysilane (PTMS) and 3‐(trimethoxysilyl)propyl ester (TMPE) and then blended with WPU. The structure–property relationships were examined. Solid‐state 29Si NMR spectra of WPU showed that structures T1, T2, and T3 of WPU decreased and structures Q3 and Q4 of PN/WPU nanocomposites increased gradually. When the PN concentration increased to 10 wt %, PN/WPU nanocomposites exhibited the maximum fraction of hydrogen‐bonded carbonyl groups. In the PTMS–PN and TMPE–PN systems, the fraction of hydrogen‐bonded carbonyl groups fluctuated stably when the concentrations of PTMS–PN and TMPS–PN exceeded 5 wt %. The X‐ray diffraction results revealed that α‐form, γ‐form, or triclinic crystallization could be found in the WPU matrix. A differential scanning calorimetry spectrum showed that the crystalline structure of the hard segment of WPU was influenced by the nanoparticle concentration. The degrees of crystallinity were 88% for the PN/WPU nanocomposites, 41% for the PTMS–PN/WPU nanocomposites, and 54% for the TMPE–PN/WPU nanocomposites when the PN, PTMS–PN, and TMPE–PN concentrations were 5 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1076–1089, 2005  相似文献   

11.
The influence of interfacial crosslinking, layer thickness and layer density on the kinetics of Ostwald ripening in multilayered emulsions at different temperatures was investigated. Growth rates of droplets were measured by monitoring changes in the droplet size distributions of 0.5% (w/w) n-octane, n-decane, and n-dodecane oil-in-water emulsions using static light scattering. Lifshitz-Slyozov-Wagner theory was used to calculate Ostwald ripening rates. A sequential two step process, based on electrostatic deposition of sugar beet pectin onto fish gelatin or whey protein isolate (WPI) interfacial membranes, was used to manipulate the interfacial properties of the oil droplets. Laccase was added to the fish gelatin-beet pectin emulsions to promote crosslinking of adsorbed pectin molecules via ferulic acid groups, whereas heat was induced to promote crosslinking of WPI and helix coil transitions of fish gelatin. Ripening rates of single-layered, double-layered and crosslinked emulsions increased as the chain length of the n-alkanes decreased. Emulsions containing crosslinked fish gelatin-beet pectin coated droplets had lower droplet growth rates (3.1 ± 0.3 × 10−26 m3/s) than fish gelatin-stabilized droplets (7.3 ± 0.2 × 10−26 m3/s), which was attributed to the formation of a protective network. Results suggest that physical or enzymatic biopolymer-crosslinking of interfaces may reduce the molecular transport of alkanes between the droplets in the continuous phase.  相似文献   

12.
In our previous report, poly(methyl vinyl ether-alt-maleic anhydride) grafted CB (GCB) with stable dispersion in water was successfully prepared. In the present study, waterborne polyurethane (WPU) nanocomposites including GCB and attapulgite (ATT) were prepared by liquid mixing method. Anionically charged GCB nanoparticles were heterocoagulated on the surface of cationically charged ATT nanorods at low pH value and improved the stabilization of ATT nanorods in water as a dispersing aid. The microstructure development in matrix that depended on various weight ratios of the nanoparticles ultimately influenced the electrical conductivity and mechanical properties of WPU nanocomposites. Composites containing equal concentrations of GCB and ATT showed reduced electrical conductivity, but significant increase in storage modulus. When the weight ratio of GCB to ATT was 5:1, both electrical conductivity and storage modulus of composite were improved simultaneously. The percolation threshold of composites containing a 5:1 (w/w) GCB/ATT ratio was lower than that of composites with GCB alone. The proposed mechanism for the effect of GCB and ATT on electrical or mechanical behaviors in composite was discussed in details. The clear evidence of microstructure development was also observed by transmission electron microscope.  相似文献   

13.
A simplified equation relating water droplet size distribution to crystallization temperature, determined from differential scanning calorimetry (DSC) curves of aqueous emulsions of petroleum is reported in this article. A series of water-in-oil (W/O) emulsions was prepared by dispersion of water in different Mexican crude oils; in a classical DSC experiment, these emulsions were submitted to a regular heating and cooling cycle within temperatures including freezing and heating of dispersed water. The Z-average diameters of the water drops (D dz) were estimated this way and correlated with petroleum composition.  相似文献   

14.
In order to study the relationship between the hydrophilic–lipophilic balance of surfactants and the dispersion properties of brine in residue, using droplet size and droplet distribution analytical method were determined on emulsions prepared with emulsifier blends of varying hydrophilic–lipophilic balance (HLB) values the required HLB values of emulsion. The objective of this study was to investigate the effect of HLB on the dispersion properties of brine in residue. The type of emulsion was prepared using emulsifiers with various hydrophilic–lipophilic balance values. The droplet size and droplet distribution varied widely among emulsions containing emulsifiers with different HLB values. The results obtained in this study indicate that the different systems of residue/brine need different HLB values. The HLB value of the emulsion with the least dispersion ratio or the least average droplet diameter was taken as the system of residue/brine required HLB the required HLB values of (NH4)6Mo7O24·4H2O, Co(NO3)2, NiSO4, Ni(NO3)2 and FeSO4. The results showed that the values of HLB were determined as different system of emulsion.  相似文献   

15.
The morphology development of polypropylene/polystyrene (PP/PS) blends was studied by means of effective mathematics methods. Time resolved fracture morphology measurements on PP/PS (20/80) blends compatibilized with styrene-butadiene-styrene block copolymer (SBS) suggested that PP/SBS domains acted as a warehouse supplying compatibilizer (SBS) to the phase boundary in the initial stage of mixing and promoted the formation and development of the transition layer. The development of the transition layer leaded to a more complicated morphology of fracture surface and strengthened the adhesion between phases, which was quantitatively investigated using Brown fractal dimension DBrown. In the early stage of the mixing (<2.0 min), the mean chord length Λm used to describe the domain size decreased; simultaneously, the distribution of Λ trended to uniform as the mixing proceeded. After 2.0 min, Λm fluctuated in a definite range. Further, a normalized distribution of dimensionless domain sizes Λ/Λm was independent of mixing time, indicating that the late stage of phase dispersion can be scaled with a time-depended single length parameter Λm. In other words, the morphology development shows a possible dynamic scaling behavior.  相似文献   

16.
采用四氯化钛(TiCl4)和氧化石墨为主要原料, 通过原位复合的方法制备了氧化钛/氧化石墨(TiO2/GO)纳米复合材料. 采用傅里叶变换红外(FTIR)光谱仪、X射线衍射(XRD)仪、热重-差热分析(TG-DTA)仪、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等手段研究了TiO2/GO纳米复合材料的结构和性能. 结果表明, 石墨在氧化过程中结构层键合大量含氧官能团, 部分含氧官能团进一步与纳米TiO2以化学键结合; 复合后氧化石墨原有衍射峰消失. 将TiO2/GO添加到水性聚氨酯(WPU)中, 制备了TiO2/GO-WPU复合涂膜. 紫外吸收光谱表明, 随着氧化石墨含量的增加, 复合涂膜的紫外吸收能力增强, 当GO含量达到一定数值时, 涂膜的紫外吸收最强, 随着GO含量继续增加吸收又呈下降趋势, 存在一较优浓度值. TiO2/GO的添加显著提高了聚氨酯涂层的抗紫外线性能, 耐磨损性能和热稳定性能.  相似文献   

17.
Waterborne polyurethane (WPU) prepolymer was first prepared based on isophorone diisocyanate (IPDI), polyether polyol (NJ-210), dimethylol propionic acid (DMPA), and hydroxyethyl methyl acrylate (HEMA) via an in situ method. A series of waterborne polyurethane-acrylate (WPUA) dispersions were obtained with different proportions of acrylate (butyl acryolate and ethyl acrylate) and initiating agent by in situ dispersion technique. The structures and thermal properties of prepared WPU and WPUA were analyzed and characterized with FT-IR, UV-vis spectroscopy, and DSC. Performance of the emulsion and film was studied by means of apparent viscosity, particle size and polydispersity, surface tension, and mechanical properties. The results indicated that the particle sizes of the WPUA dispersions were larger than those of the pure WPU and the solvent resistance and mechanical properties of WPUA films were improved over those of the WPU film. The film had the greatest hardness and the least water absorption when the BA:EA mass ratio was 50:50. The obtained WPUAs have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings, and wood finishes.  相似文献   

18.
The combination of series of measurements of band broadening made with the peak parking (PP) method, using successively an open capillary tube and a HPLC column, gives a convenient procedure for the measurement of the molecular diffusivity (Dm) of compounds in solutions, of their axial dispersion coefficient (Dax,m) in chromatographic columns, and of the tortuosity or obstructive factor of the column bed. The molecular diffusivity measured for benzene in methanol was in excellent agreement with literature data. The ratio of the axial dispersion coefficient to this diffusivity gives the obstructive factor (γm) of the packed bed, which was 0.74 for the column used. The values of Dm in other solutions were obtained from the Dax,m values measured by the PP method, by correcting the Dax,m values with the γm value. The Dm values determined by this method were in good agreement with those previously reported or estimated using literature correlations. These results showed that the PP method is effective for the experimental measurement of Dm.  相似文献   

19.
Novel waterborne polyurethane (WPU) composites based on NiAl‐LDH and ZnO were successfully synthesized by in‐situ polymerization. The nanostructured NiAl‐LDH/ZnO was first grafted by isophorone diisocyanate (IPDI), forming the NiAl‐LDH/ZnO‐NCO complex with ―NCO group on the surface, which promotes its homogeneous dispersion in WPU matrix. The microstructure and particle distribution of the composites were characterized. The mechanical properties and the water resistance of the composites were improved. Furthermore, the composites also exhibit significant antibacterial activity towards G(?) Escherichia coli and G(+) Staphylococcus aureus. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The waterborne polyurethane (WPU) was synthesized from the polycondensation between isophorone diisocyanate (IPDI) and polyoxypropylene glycol (N‐210) and then dispersed into water. Subsequently, the WPU emulsion was modified with antimony doped tin oxide (ATO) nanoparticle by ultrasonic dispersion. The ATO/WPU emulsion was cast onto Teflon molds. After being dried, ATO/WPU films were prepared. TEM indicated that the ATO nanoparticles were homogeneously dispersed in the polymer matrix at the nanometer scale. DSC showed that the ATO/WPU nanocomposites displayed increased glass transition temperatures compared to the control WPU. The mechanical properties of the films were characterized by dynamic‐mechanical analysis (DMA). The higher glass transition temperature and storage modulus indicates the superior mechanical properties of WPU modified by ATO nanoparticles over the conventional unmodified WPU. The thermal behaviors of the films were evaluated by thermogravimetric analysis (TGA). It could be found that the incorporation of ATO into WPU can improve the thermal stability dramatically. The results from UV–visible–near infrared spectra indicated that the ATO/WPU films could decrease the infrared transmission effectively. The heat‐insulation measurements showed that glass coated with ATO/WPU films possessed better heat‐insulating effect than empty glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号