首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence microscopy was used to study the folding transition of giant DNAs, T4 DNA (ca. 166 kbp), and lambda DNA (ca. 48 kbp), which proceeds through intermediates with intramolecular segregation induced by pteridine-polyamine conjugates, i.e., 2-amino-6,7-dimethyl-4-(4,9,13-triazatridecylamino)pteridine and -4-(3-(aminopropyl)amino)pteridine. According to the results of DNA denaturation, UV and fluorescent spectroscopy, and transmission electron microscopic observations, it became clear that DNA folding induced by the polyamine derivative is not a continuous shrinking process but a combination of discontinuous processes.  相似文献   

2.
3.
Protein citrullination is a posttranslational modification where peptidylarginine is enzymatically deiminated to form peptidylcitrulline. Although the role of protein citrullination in both health and disease is being increasingly recognised, techniques available to identify citrullinated proteins and to map their citrullination site(s) are rare and often show poor sensitivity. Here, we present a sensitive technique for specific modification and selective enrichment of citrullinated peptides from complex biological samples. The technique is based on highly specific in-solution biotinylation of citrulline residues followed by selective enrichment of modified peptides using streptavidin beads. We demonstrate that a synthetic citrulline-containing peptide can be selectively enriched when less than 0.5 pmol is spiked into a highly heterogeneous peptide mixture. After enrichment, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of an aliquot of the streptavidin eluate corresponding to theoretically 50 fmol of the spiked-in peptide showed a prominent signal. We further demonstrate the sensitivity of our technique by enrichment of citrullinated peptides from enzymatically deiminated myelin basic protein (MBP), when 10 pmol was spiked into a heterogeneous biological digest. In MALDI-TOF MS analysis, six MBP-derived citrullinated peptides were observed, showing the efficiency of this enrichment strategy. The high sensitivity combined with the remarkable specificity of the described technique makes it a valuable tool for elucidating citrullination in various biological processes.
Figure
Schematic view of the established technique for modification and enrichment of citrullinated peptides (top). Enrichment of the synthetic peptide RPSQ-Cit-HGSK (0.5 pmol) from a complex sample (8.2 nmol) (bottom). After enrichment an amount corresponding to 50 fmol of the spiked-in peptide was analysed and is observed as a prominent signal (m/z 1569.85)  相似文献   

4.
An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.  相似文献   

5.
In the absence of dioxygen, the cationic complex [(phen)2Ru(tatpp)Ru(phen)2]4+ (P4+) undergoes in situ reduction by glutathione (GSH) to form a species that induces DNA cleavage. Exposure to air strongly attenuates the cleavage activity, even in the presence of a large excess of reducing agent (e.g., 40 equiv of GSH per P4+), suggesting that the complex may be useful in targeting cells with a low-oxygen microenvironment (hypoxia) for destruction via DNA cleavage. The active species is identified as the doubly reduced, doubly protonated complex H2P4+, and a carbon-based radical species is implicated in the cleavage action. We postulate that the dioxygen concentration regulates the degree to which the carbon radical forms and thus regulates the DNA cleavage activity.  相似文献   

6.
Writing with DNA and protein using a nanopipet for controlled delivery   总被引:1,自引:0,他引:1  
We present a new, general method for the controlled deposition of biological molecules on surfaces, based on a nanopipet operating in ionic solution. The potential applied to the pipet tip controls the flux of biological molecules from the pipet, allowing fine control of the delivery rate. We used the ion current to control the distance of the pipet from the surface of a glass slide and deposited the fluorescently labeled DNA or protein G at a defined location onto the surface. Features of 830 nm size were obtained by depositing the biotinylated DNA onto a streptavidin surface; 1.3 mum size spots were obtained by depositing protein G onto a positively charged glass surface.  相似文献   

7.
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L−1 of 17-beta-estradiol, 100 ng L−1 of ethynylestradiol, and 6.6 μg L−1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.  相似文献   

8.
9.
10.
We report a simple and efficient method for enriching the concentration of charged analytes within microfluidic channels. The method relies on exerting spatial control over the electrokinetic velocity of an analyte. Specifically, the electroosmotic (eo) velocity of the buffer solution in one region of the microfluidic system opposes the electrophoretic (ep) velocity of the analyte in the other region. This results in ep transport of DNA to the location where the ep and eo velocities are equal and opposite. Accumulation of the analyte occurs at this location. This enrichment method is conceptually distinct from field-amplification stacking, isotachophoresis, micelle sweeping, size exclusion, and other methods that have been previously reported. The method requires no complex microfabricated structures, no special manipulation of the solvent, and the enriched analyte remains in solution rather than being captured on a solid support. A concentration enrichment factor of 800 can be achieved for 20mer DNA in a fluidic channel having dimensions of 100 mum x 25 mum x 5 mm. The time required to achieve this level of enrichment is 300 s, and the enriched zone has a minimum width of 100 mum.  相似文献   

11.
Campylobacter jejuni is found in the intestines of poultry, cattle, swine, wild birds and pet animals and is the major cause of foodborne gastroenteritis in developed countries. We report the use of the receptor binding protein (RBP) of Campylobacter bacteriophage NCTC 12673 for the specific capture of Campylobacter jejuni bacteria using RBP-derivatized capturing surfaces. The Gp48 RBP was expressed as a glutathione S-transferase-Gp48 (GST-Gp48) fusion protein and immobilized onto surface plasmon resonance (SPR) surfaces using glutathione self-assembled monolayers (GSH SAM). Bovine serum albumin (BSA) was used to block any non-specific binding. Glutathione SAM leads to an oriented attachment of the protein, resulting in a two- to three-fold improvement of bacterial capture when compared to dithiobis(succinimidyl propionate) (DTSP) SAM-based unoriented attachment. The specificity of recognition was confirmed using Salmonella enterica subsp. enterica serovar Typhimurium as a negative control, which indeed showed negligible binding. The detection limit of the RBP-derivatized SPR surfaces was found to be 10(2) cfu/ml. Finally, GST-Gp48 was also immobilized onto magnetic beads that were successfully used to capture and pre-concentrate the host pathogen from suspension.  相似文献   

12.
In this article, interactions between Bacillus subtilis single-stranded DNA binding proteins (BsSSB) and single-stranded DNA (ssDNA) were systematically studied. The effect of different molar ratios between BsSSB and ssDNA on their binding modes was first investigated by electrophoretic mobility shift assays (EMSAs). It is found that a high molar ratio of BsSSB to ssDNA can produce BsSSB-ssDNA complexes formed in the mode of two proteins binding one 65-nt (nucleotide) ssDNA whereas a low molar ratio facilitates the formation of BsSSB-ssDNA complexes in the mode of one protein binding one 65-nt ssDNA. Furthermore, two binding modes are in dynamic equilibrium. The unbinding force of BsSSB-ssDNA complexes was measured quantitatively in solutions with different salt concentrations by using AFM-based single-molecule force spectroscopy (SMFS). Our results show that the unbinding force is about 10 pN higher at high salt concentration (0.5 M NaCl) than at low salt concentration (0.1 M NaCl) and the lifetime of BsSSB-ssDNA complexes at high salt concentration is twice as long as that at low salt concentration. These results indicate that more tightly packed BsSSB-ssDNA complexes can form at high salt (0.5 M NaCl) concentration. In addition, the results of EMSA show that ssDNA, which is bound to BsSSB, can dissociate from BsSSB in the presence of the cDNA strand, indicating the dynamic nature of BsSSB-ssDNA interactions.  相似文献   

13.
An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN)6 3? which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%.
Graphical abstract Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).
  相似文献   

14.
To improve the detection of phosphorylated peptides/proteins, a combination of optimized MS-based strategies were used involving chemical derivatization with a polyhistidine-tag (His-tag) and affinity enrichment of the resulting His-tag peptides on a nanoscale Ni(2+)-IMAC column. The phosphoserine and phosphothreonine peptides were derivatized using a one-pot beta-elimination/Michael addition reaction with a reversible His-tag possessing a thiol-containing Cys residue. The His-tag peptides were enriched selectively by Ni(2+)-IMAC and released using either imidazole or cleavage with Factor Xa. This novel capture and enzyme-mediated release provided an additional element of selectivity and yielded phosphopeptide-specific modifications with enhanced MS ionization characteristics. The eluted peptides were mapped using MALDI-TOF MS and QTRAP ESI-MS/MS techniques. The results obtained for a model peptide and two tryptic protein digests show that the method is highly specific and allows selective enrichment of phosphorylated peptides at low concentrations of femtomoles per microliter.  相似文献   

15.
16.
A simple and efficient approach for concentration of charged molecules in microfluidic devices is described. The functional component of the system is a hydrogel microplug photopolymerized within the main channel of a microfluidic device. When an appropriately biased voltage is applied across the hydrogel, charged analyte molecules move from the source well toward the hydrogel. Transport of the analyte through the hydrogel is slow compared to its velocity in the microfluidic channel, however, and therefore it concentrates at the hydrogel/solution interface. For an uncharged hydrogel, a bias of 100 V leads to a approximately 500-fold enrichment of the DNA concentration within 150 s, while the same conditions result in an enrichment of only 50-fold for fluorescein. Somewhat lower enrichment factors are observed when a negatively charged hydrogel is used. A qualitative model is proposed to account for the observed behavior.  相似文献   

17.
Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. No vaccines exist against C. parvum, the drugs currently approved to treat cryptosporidiosis are ineffective, and drug discovery is challenging because the parasite cannot be maintained continuously in cell culture. Mining the sequence of the C. parvum genome has revealed that the only route to guanine nucleotides is via inosine-5'-monophosphate dehydrogenase (IMPDH). Moreover, phylogenetic analysis suggests that the IMPDH gene was obtained from bacteria by lateral gene transfer. Here we exploit the unexpected evolutionary divergence of parasite and host enzymes by designing a high-throughput screen to target the most diverged portion of the IMPDH active site. We have identified four parasite-selective IMPDH inhibitors that display antiparasitic activity with greater potency than paromomycin, the current gold standard for anticryptosporidial activity.  相似文献   

18.
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of the survival motor neuron 1 (SMN1) gene. A nearly identical copy gene exists known as SMN2, however, due to an aberrant splicing event, the SMN2 gene fails to produce sufficient full-length protein to protect against disease development in the absence of SMN1. While a number of compounds have recently been identified that can stimulate full-length survival motor neuron (SMN) expression from the nearly identical copy SMN2, one of the difficulties has been the lack of a highly reproducible and quantitative means to measure the levels of SMN protein. To develop a technique that allows the rapid and highly sensitive measurement of SMN protein, a Surface Plasmon Resonance (SPR) application has been developed. The ability to quantify unassociated SMN protein and monitor the binding of SMN with other proteins in solution using a SPR sensor in less than 15 min and at low ng mL(-1) levels in HEPES Buffer Saline (HBS) has been achieved. The detection limit for the specific binding of SMN in HBS pH 7.4 solution is 0.99 ng mL(-1) with non-specific binding accounting for approximately 30% of the signal. Quantification of SMN is based on an immunoassay performed on the gold surface of the SPR sensor. 16-mercaptohexadecanoic acid (MHA) was reacted with dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) to form a pre-activated thiol (MHA-NHS). Antibodies for SMN were then coupled to the sensor with the pre-activated thiol. Sensor specificity was examined with mixtures of myoglobin (MG) and SMN. SMN sensor response decreases by more than 60% when MG was added to SMN. The decrease in sensor response can be attributed to non-specific binding of SMN to MG, verified with a sensor for MG.  相似文献   

19.
We present a simple and versatile technique of tailoring functionalized surface structures for protein enrichment and purification applications based on a superhydrophobic silicone nanofilament coating. Using amino and carboxyl group containing silanes, silicone nanofilament templates were chemically modified to mimic anionic and cationic exchange resins. Investigations on the selectivity of the functionalized surfaces toward adsorption of charged model proteins were carried out by means of fluorescence techniques. Due to a high contact area resulting from the nanoroughness of the coating, excellent protein retention characteristics under various conditions were found. The surfaces were shown to be highly stable and reusable over several retention-elution cycles. Especially the full optical transparency and the possibility to use glass substrates as support material open new opportunities for the development of optical biosensors, open geometry microfluidics, or lab-on-a-chip devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号