首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the high temperature or low connectivity phase of the Viana–Bray model in the absence of magnetic field. This is a diluted version of the well known Sherrington–Kirkpatrick mean field spin glass. In the whole replica symmetric region, we obtain a complete control of the system, proving annealing for the infinite volume free energy and a central limit theorem for the suitably rescaled fluctuations of the multi-overlaps. Moreover, we show that free energy fluctuations, on the scale 1/N, converge in the infinite volume limit to a non-Gaussian random variable, whose variance diverges at the boundary of the replica-symmetric region. The connection with the fully connected Sherrington– Kirkpatrick model is discussed.  相似文献   

2.
When a high-frequency electromagnetic wave propagates in a complicated scattering environment, the contribution at the observer is usually composed of a number of field species arriving along different ray trajectories. In order to describe each contribution separately the parabolic extension along an isolated ray trajectory in an inhomogeneous background medium was performed. This leads to the parabolic wave equation along a deterministic ray trajectory in a randomly perturbed medium with the possibility of presenting the solution of the high-frequency field and the higher-order coherence functions in the functional path-integral form. It is shown that uncertainty considerations play an important role in relating the path-integral solutions to the approximate asymptotic solutions. The solutions for the high-frequency propagators derived in this work preserve the random information accumulated along the propagation path and therefore can be applied to the analysis of double-passage effects where the correlation between the forward-backward propagating fields has to be accounted for. This results in double-passage algorithms, which have been applied to analyze the resolution of two point scatterers. Under strong scattering conditions, the backscattering effects cannot be neglected and the ray trajectories cannot be treated separately. The final part is devoted to the generalized parabolic extension method applied to the scalar Helmholtz's equation, and possible approximations for obtaining numerically manageable solutions in the presence of random media.  相似文献   

3.
Using large scale Monte Carlo simulations, the ordering of the three-dimensional three state Potts ferromagnet exposed to random fields is investigated. Studies of the order parameter probability distribution and of various of its moments suggest that the order of the transition depends on the strength of the random field: i.e., the first order transition of the pure ferromagnetic model persists for weak random fields, but turns into a second order transition for a range of random fields of medium strength. For large random fields the transition seems to be first order again. In this range large domains of strongly aligned Potts spins occur already in the disordered phase and the associated slow relaxation hampers significantly the Monte Carlo study of thermodynamic equilibrium phenomena. These results are discussed in the light of current theoretical concepts. Possible applications to experiments on diluted anisotropic molecular crystals and orientational glasses are briefly mentioned.  相似文献   

4.
Using large scale Monte Carlo simulations, the ordering of the three-dimensional three state Potts ferromagnet exposed to random fields is investigated. Studies of the order parameter probability distribution and of various of its moments suggest that the order of the transition depends on the strength of the random field: i.e., the first order transition of the pure ferromagnetic model persists for weak random fields, but turns into a second order transition for a range of random fields of medium strength. For large random fields the transition seems to be first order again. In this range large domains of strongly aligned Potts spins occur already in the disordered phase and the associated slow relaxation hampers significantly the Monte Carlo study of thermodynamic equilibrium phenomena. These results are discussed in the light of current theoretical concepts. Possible applications to experiments on diluted anisotropic molecular crystals and orientational glasses are briefly mentioned.  相似文献   

5.
In this paper a special toroidal coordinate system is introduced in order to derive general solutions for the electric and magnetic fields from a toroidal antenna. These solutions depend on the current distribution on the toroid and are in integral forms. Some Fourier expansion techniques have been used in order to simplify these integral equations. The surface current is found under the assumption that the thickness of the toroid is thin compared to the wavelength, which leads to an analytic solution for the fields at the center. Many uniform loading impedances are used with the purpose of producing a plane-wave-like field at the center of the toroid.  相似文献   

6.
This work is devoted to the study of tensor gauge fields on a string-like defect in six dimensions. This model is very successful in localizing fields of various spins only by gravitational interaction. Due to problems of field localization in membrane models we are motivated to investigate if a string-like defect localizes the Kalb–Ramond field. In contrast to what happens in Randall–Sundrum and thick brane scenarios we find a localized zero mode without the addition of other fields in the bulk. Considering the local string defect we obtain analytical solutions for the massive modes. Also, we take the equations of motion in a supersymmetric quantum mechanics scenario in order to analyze the massive modes. The influence of the mass as well as the angular quantum number in the solutions is described. An additional analysis on the massive modes is performed by the Kaluza–Klein decomposition, which provides new details about the KK masses.  相似文献   

7.
The effects of the two lowest-order uniaxial anisotropy fields on the phase diagrams of the classical m-vector spin glass are analyzed. The model is defined in terms of infinite–range interactions and the replica approach is used to study the system. The replica-symmetric phase diagrams present qualitative modifications with respect to those with no uniaxial anisotropies; new features, in particular, reentrance effects arise. In some cases, the reentrant critical frontiers are totally inside the region of instability of the replica-symmetric solution and may disappear within more general parametrizations, whereas in other cases, they coincide with the limit of stability of such a solution and should persist under replica-symmetry breaking.  相似文献   

8.
Coordinates Changed Random Fields on the Sphere   总被引:1,自引:0,他引:1  
We construct time dependent random fields on the sphere through coordinates change and subordination and we study the associated angular power spectrum. Some of this random fields arise naturally as solutions of partial differential equations with random initial condition represented by a Gaussian random field.  相似文献   

9.
Using a probabilistic approach, the parallel dynamics of fully connected Q-Ising neural networks is studied for arbitrary Q. A novel recursive scheme is set up to determine the time evolution of the order parameters through the evolution of the distribution of the local field, taking into account all feedback correlations. In contrast to extremely diluted and layered network architectures, the local field is no longer normally distributed but contains a discrete part. As an illustrative example, an explicit analysis is carried out for the first four time steps. For the case of the Q = 2 and Q = 3 model the results are compared with extensive numerical simulations and excellent agreement is found. Finally, equilibrium fixed-point equations are derived and compared with the thermodynamic approach based upon the replica-symmetric mean-field approximation.  相似文献   

10.
In the present work we construct non-Gaussian self-similar random fields with hierarchical structure. The construction is based on non-Gaussian solutions of the main nonlinear equation of the hierarchical models theory. The existence of such solutions was proved originally by Sinai and the author and later by another method by Collet and Eckmann. Next we establish the uniqueness of a Gibbs state for the constructed self-similar field. Finally for a class of hierarchical models we prove the convergence of renormalization transformations of a random field at the critical point to the self-similar field.  相似文献   

11.
A spin-1 model, appropriated to study the competition between bilinear (J ij S i S j ) and biquadratic (K ij S i 2 S j 2) random interactions, both of them with zero mean, is investigated. The interactions are infinite-ranged and the replica method is employed. Within the replica-symmetric assumption, the system presents two phases, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic couplings between the spins. Received 18 May 1999 and Received in final form 20 October 1999  相似文献   

12.
We investigate statistics of occupation times for an over-damped Brownian particle in an external force field, using a backward Fokker–Planck equation introduced by Majumdar and Comtet. For an arbitrary potential field the distribution of occupation times is expressed in terms of solutions of the corresponding first passage time problem. This general relationship between occupation times and first passage times, is valid for normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled using the fractional Fokker–Planck equation. For binding potential fields we find in the long time limit ergodic behavior for normal diffusion, while for the fractional framework weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai on the continuous time random walk on a lattice. For non-binding cases, rich physical behaviors are obtained, and classification of occupation time statistics is made possible according to whether or not the underlying random walk is recurrent and the averaged first return time to the origin is finite. Our work establishes a link between fractional calculus and ergodicity breaking.  相似文献   

13.
14.
We study commensurable charge-density wave systems in the presence of random impurities. The results of the microscopic theory, especially the contributions of second order in the impurity fields, are briefly discussed. The lifetime of the excitations is calculated, as well as the response of a soliton to an external field.  相似文献   

15.
An analysis is made of particle diffusion and the field of a passive impurity in random wave fields. A characteristic of this problem is that the statistical transport coefficients (diffusion coefficients) vanish in the approximations normally used (delta-correlated random field or diffusion) giving the Fokker-Planck equation. In this study perturbation theory is used in the first nonvanishing order of smallness which allows these transport coefficients to be calculated for waves of various types.  相似文献   

16.
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility to represent the averages of quantum observables (including correlations of observables on subsystems of a composite system) as averages with respect to fluctuations of classical random fields. In view of the PCSFT terminology, quantum states are classical random fields. The aim of our approach is to represent all quantum probabilistic quantities by means of classical random fields. We obtain the classical-random-field representation for pairwise correlations in three-partite quantum systems. The three-partite case (surprisingly) differs substantially from the bipartite case. As an important first step, we generalized the theory developed for pure quantum states of bipartite systems to the states given by density operators.  相似文献   

17.
The influence of random mass density and velocity fields on the frequencies and amplitudes of the sound waves that propagate along a constant gravity field is examined in the limit of weak random fields, small amplitude oscillations and a weakly stratified medium. Using a perturbative method, we derive dispersion relations from which we conclude that the effect of a space-dependent random mass density field is to attenuate sound waves. Frequencies of these waves are higher than in the case of a coherent medium. A time-dependent random mass density field increases frequencies and amplifies the sounds waves. On the other hand, a space-dependent random flow reduces the wave frequencies and attenuates the sound waves. The time-dependent random flow raises the frequencies of the sound waves and amplifies their amplitudes. In the limit of the gravity-free medium the above results are in an agreement with the former findings.  相似文献   

18.
小孔衍射和近场散射数值计算的格林函数方法   总被引:1,自引:1,他引:0  
从简谐光波满足的亥姆霍兹方程出发,将由格林定理得到的介质分界面上的积分方程转化为以表面上的光波及其导数为未知量的线性方程组,并对其进行数值求解,实现了光场的数值计算。然后将这一方法应用于亚波长尺度的小孔衍射的光波以及自仿射分形表面产生的随机光场及其在近场区域范围内的传播的计算。在随机表面产生的光场计算中.提出了类比推导夫琅禾费面上散斑场自相关函数的方法产生随机表面,以及计算其导数的傅里叶变换方法。对光场的计算结果表明,在近场范围内,光场随离开表面的距离的增加而迅速变化,其传播特性完全不同于光场在远场范围内的传播特性。  相似文献   

19.
20.
We study integral statistical characteristics of a vector passive tracer (homogeneous at the initial time) in a velocity field that is assumed to be a Gaussian random field homogeneous in space and delta-correlated in time. Such statistical characteristics describe the dynamical system as a whole in the entire space, separating out the field generation processes, which allows us to not digress into details of the dynamics related to the advection of these quantities. The density field gradient (in the general case of a compressible fluid) and the magnetic field vector with its spatial derivatives (in an incompressible fluid) are such a tracer. We study the isotropization in time, helicity, and dissipation of these fields in the absence of molecular diffusion effects. We formulate a method of successive approximations for the variance of the density field and the mean magnetic field energy that allows the solutions valid in the entire time interval to be obtained in the first order in molecular diffusion coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号