首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
细胞色素P450酶是广泛存在的含亚铁血红素单加氧酶,参与甾类激素的合成、脂溶性维生素代谢、多不饱和脂肪酸转换为生物活性分子,以及致癌作用和药物代谢.综述了细胞色素P450结构与功能的关系,特别是细胞色素P450对底物的选择性以及催化机制,并对其未来的发展方向进行了展望.  相似文献   

2.
细胞色素P450超级家族在代谢众多的外源性化学物质方面发挥重要的作用.细胞色素P4502C8是人体肝脏中主要负责代谢抗癌药物紫杉醇的酶,它至少负责代谢5%的临床药物.细胞色素P450 2C8的基因多态性与用药个体化有着密切的关系.CYP2C8.3是常见的P450 2C8的基因多态之一,其发生了双点突变,分别是R139K...  相似文献   

3.
细胞色素P450的电化学研究从一个侧面反映了为使细胞色素P450达到工业催化剂的最终目的人们所作的不懈努力。本文从细胞色素P450在电极上的电子转移研究,隧道扫描显微镜的微观成像研究和使用电极作为细胞色素P450的电子给体从而实现细胞色素P450底物转化三方面,评述了近年来细胞色素P450的电化学研究进展。  相似文献   

4.
细胞色素P450酶分布广泛,主要参与生物体外源物质代谢与天然产物生物合成,能以结构多样的有机化合物作为底物催化多种类型的化学反应.P450酶可在温和条件下实现底物分子中C—H键的选择性氧化,因而在精细化学品、化学中间体及药物分子的生产上具有很高的实用价值及多年的应用历史.随着蛋白质工程、氧化还原伴侣工程、底物工程、代谢工程与合成生物学的发展,目前已可初步实现根据反应需求来理性设计或定向进化改造P450酶催化系统来高效催化多种有机反应,拓宽了P450酶在生物合成与有机合成反应中的应用范围.总结了近年来由细胞色素P450酶参与催化的主要反应类型,归纳了拓宽P450酶催化反应类型、提高催化活性和选择性的一些重要策略,并对未来P450酶在生物合成及有机合成反应中的应用发展前景和挑战进行了展望.  相似文献   

5.
药物代谢过程是药物在体内产生药效和毒性的主要过程,发展廉价、方便、快速、高通量的体外药物代谢研究方法对新药的开发和设计、给药的方法和剂量、临床药物的检测等都有重要的指导意义. 细胞色素P450酶(CYP450酶)在药物的I相反应中起到关键作用,以电极代替辅酶NADPH提供CYP450酶催化反应过程中需要的两个电子,构建CYP450酶电化学生物传感器可实现药物的初步筛选. 大量研究表明,CYP450酶在电极表面合适的固定方法与电极材料可有效提高传感器的检测性能. 本文主要综述近年来CYP450酶电化学生物传感器的构建及其在药物代谢研究方面的应用,并展望其研发前景.  相似文献   

6.
以奥美拉唑、 苯妥英、 卡马西平和非那西丁为检测肝药酶细胞色素P450酶(CYP450)亚型的专属探针药物, 通过原型药物减少量测定法考察药物体外代谢的变化, 评价人参皂苷Rb1对CYP450不同亚型酶的作用. 结果表明, P2C9, P2C19和P3A4实验组与对照组差异不显著, P1A2实验组与对照组差异显著, 表明人参皂苷Rb1能诱导P1A2亚型酶的活性, 促进底物与酶反应, 加快底物的代谢, 而对P2C9, P2C19和P3A4三个亚型酶有弱的诱导或无诱导作用. 根据快速分离液相色谱-质谱联用(RRLC-MS/MS)检测结果推断, 人参皂苷Rb1在CYP450酶中的代谢产物可转化为人参皂苷Rb1氧化产物(Rb1+O)及人参皂苷Rd和F2.  相似文献   

7.
高效液相色谱法测定家蝇细胞色素P450O-脱甲基活性   总被引:1,自引:0,他引:1  
建立了以乙酸乙酯/正己烷为终止剂(含1% H3PO4)和萃取剂,利用高效液相色谱,ZORBAX Eclipse XDB C18色谱柱,梯度洗脱,在316 nm检测,外标法分析对硝基苯酚的生成量,表征家蝇粗酶液中细胞色素P450催化的对硝基苯甲醚 O-脱甲基活性的新方法.本方法的检出限为0.1 ng; 分析精密度的RSD为1.02%; 0.351, 1.755和8.755 μg对硝基苯酚3个添加水平的回收率为92.34%~87.60%; 回收率的RSD为2.64%~5.90%;对硝基苯酚在9.72~486 ng范围内,线性关系良好, r=0.9995.应用本方法比较了家蝇吡虫啉抗性品系与敏感品系细胞色素P450的活性差异.结果表明,家蝇抗性品系的P450 O-脱甲基活性是敏感品系的3.34倍; 细胞色素P450活性的提高是家蝇对吡虫啉产生抗性的一个重要机制.  相似文献   

8.
在生命体中,细胞色素P-450单充氧酶辅基是具有铁Df琳结构的血红素.用金属叶琳作为细胞色素P-450单充氧酶的模型化合物探讨和研究人类生命现象一直是国内外化学仿生催化领域极为感兴趣的研究内容之一[’1.我们曾用p一氧代双铁叶琳作为细胞色素P-450单充氧酶的模型化合物,发现改变金属叶琳结构和金属原子电子自旋态将会引起金属叶琳磁性改变,而金属叶琳磁性改变会进一步导致金属叶琳仿生催化性能发生改变D”‘.我们认为,这一现象与人类和地球构成的生物圈可能有某些关联.为了考察地球磁场对人类生命现象的影响,我们进一步建立…  相似文献   

9.
铬(Ⅲ)四苯基卟啉-亚碘酰苯体系在温和条件下能催化氧化碳氢化合物,是细胞色素P-450很好的模拟体系。分离和表征细胞色素P-450模拟体系的活性中间体,不仅能解释细胞色素P-450模拟体系催化氧化碳氢化合物的反应机理,而且也有助于深入了解细胞色素P-450催化氧化碳氢化合物的反应机理及其活性中间体的结构。我们首先分离和表征的细胞色素P-450模拟体系的一种活性中间体-氧配位铬(V)四苯基卟啉配合物,具有氧化碳氢化合物的活性。这篇论文报道细胞色素P-450模拟体系的另一种活性中间体-亚碘酰苯铬(Ⅳ)四苯基卟啉配合物的分离,表征和对环已烯的氧化性质。  相似文献   

10.
碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂.P450酶对惰性C-H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.  相似文献   

11.
The cytochrome P450 (P450) enzymes are mainly localized to the endoplasmic reticulum (ER), where they function within catalytic complexes metabolizing xenobiotics and some endogenous substrates. However, certain members of families 1–3 were also found in other subcellular compartments, such as mitochondria, plasma membrane, and lysosomes. The physiological function of these enzymes in non-ER locations is not known, although plasma-membrane-associated P450s have been described to be catalytically active and to participate in immune-mediated reactions with autoantibody formation that can trigger drug-induced hepatitis. Several retention/retrieval mechanisms are active in the ER retention of the P450s and inverse integration of the translated P450 into the ER membrane appears to be responsible for transport to the plasma membrane. Furthermore, hydrophilic motifs in the NH2-terminal part have been suggested to be important for mitochondrial import. Phosphorylation of P450s has been described to be important for increased rate of degradation as well as for targeting into mitochondria. It was also suggested that the mitochondria-targeted P450s from families 1–3 could be active in drug metabolism using an alternative electron transport chain. In this review we present an update of the field emphasizing studies concerning localization, posttranslational modification, such as phosphorylation, and intracellular transport of microsomal P450s.  相似文献   

12.
Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spectroscopy is employed to measure the dynamics of cyt P450(cam) from Pseudomonas putida on fast time scales using CO bound at the active site as a vibrational probe. The substrate-free enzyme and the enzyme bound to both its natural substrate, camphor, and a series of related substrates are investigated to explicate the role of dynamics in molecular recognition in cyt P450(cam) and to delineate how the motions may contribute to hydroxylation specificity. In substrate-free cyt P450(cam), three conformational states are populated, and the structural fluctuations within a conformational state are relatively slow. Substrate binding selectively stabilizes one conformational state, and the dynamics become faster. Correlations in the observed dynamics with the specificity of hydroxylation of the substrates, the binding affinity, and the substrates' molecular volume suggest that motions on the hundreds of picosecond time scale contribute to the variation in activity of cyt P450(cam) toward different substrates.  相似文献   

13.
The impact of lifestyle on shaping the genome content of an organism is a well-known phenomenon and cytochrome P450 enzymes (CYPs/P450s), heme-thiolate proteins that are ubiquitously present in organisms, are no exception. Recent studies focusing on a few bacterial species such as Streptomyces, Mycobacterium, Cyanobacteria and Firmicutes revealed that the impact of lifestyle affected the P450 repertoire in these species. However, this phenomenon needs to be understood in other bacterial species. We therefore performed genome data mining, annotation, phylogenetic analysis of P450s and their role in secondary metabolism in the bacterial class Gammaproteobacteria. Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging to 161 genera revealed that only 169 species belonging to 41 genera have P450s. A total of 277 P450s found in 169 species grouped into 84 P450 families and 105 P450 subfamilies, where 38 new P450 families were found. Only 18% of P450s were found to be involved in secondary metabolism in Gammaproteobacterial species, as observed in Firmicutes as well. The pathogenic or commensal lifestyle of Gammaproteobacterial species influences them to such an extent that they have the lowest number of P450s compared to other bacterial species, indicating the impact of lifestyle on shaping the P450 repertoire. This study is the first report on comprehensive analysis of P450s in Gammaproteobacteria.  相似文献   

14.
Molecular mechanics (MM) methods are computationally affordable tools for screening chemical libraries of novel compounds for sites of P450 metabolism. One challenge for MM methods has been the absence of a consistent and transferable set of parameters for the heme within the P450 active site. Experimental data indicate that mammalian P450 enzymes vary greatly in the size, architecture, and plasticity of their active sites. Thus, obtaining X-ray-based geometries for the development of accurate MM parameters for the major classes of hepatic P450 remains a daunting task. Our previous work with preliminary gas-phase quantum mechanics (QM)-derived atomic partial charges greatly improved the accuracy of docking studies of raloxifene to CYP3A4. We have therefore developed and tested a consistent set of transferable MM parameters based on gas-phase QM calculations of two model systems of the heme-a truncated (T-HM) and a full (F-HM) for four states of the P450 catalytic cycle. Our results indicate that the use of the atomic partial charges from the F-HM further improves the accuracy of docked predictions for raloxifene to CYP3A4. Different patterns for substrate docking are also observed depending on the choice of heme model and state. Newly parameterized heme models are tested in implicit and explicitly solvated MD simulations in the absence and presence of enzyme structures, for CYP3A4, and appear to be stable on the nanosecond simulation timescale. The new force field for the various heme states may aid the community for simulations of P450 enzymes and other heme-containing enzymes.  相似文献   

15.
The prediction of drug metabolism is an important task in drug development. Besides well-established in vitro and in vivo methods using biological matrices, several biomimetic models have been developed. This review summarizes three different nonenzymatic strategies, including metalloporphyrins as surrogates of the active centre of cytochrome P450, Fenton’s reagent, and the electrochemical oxidation of drug compounds. Although none of the systems can simulate the whole range of cytochrome P450-catalyzed reactions adequately, the biomimetic models show some advantages over standard in vitro methods. For example, metalloporpyhrin catalysts allow the synthesis of certain metabolites in sufficient amounts and with sufficient purities to permit characterization and further pharmacological and toxicological tests. The electrochemical generation of metabolites coupled on-line to liquid chromatography/mass spectrometry is a promising tool for studying reactive metabolites and can be applied in automated high-throughput screening approaches. In this paper, detailed comparisons with cytochrome P450 catalysis are drawn, advantages and disadvantages of the respective methods are revealed, and possible applications are discussed.  相似文献   

16.
Heme metabolism by heme oxygenase (HO) is investigated with quantum mechanical/molecular mechanical (QM/MM) calculations. A mechanism assisted by water is proposed: (1) an iron-oxo species and a water molecule are generated by the heterolytic cleavage of the O-O bond of an iron-hydroperoxo species in a similar way to P450-mediated reactions, (2) a hydrogen atom abstraction by the iron-oxo species from the generated water molecule and the C-O bond formation between the water molecule and the α-meso carbon take place simultaneously. The water molecule is hydrogen-bonded to the oxo ligand and to the water cluster in the active site of HO. The water cluster can control the position of the generated water molecule to ensure the regioselective oxidation of heme at the α-meso position, at the same time, can facilitate the oxidation by stabilizing a positive charge on the water molecule in the transition state. A key difference between HO and P450 is observed in the structure of the active site; Thr252 in P450 blocks the access of the water molecule to the α-meso position, and can thus suppress the undesired heme oxidation for P450.  相似文献   

17.
The cytochrome P450 enzymes represent an important class of heme-containing enzymes. There is considerable interest in immobilizing these enzymes on a surface so that interactions between a single enzyme and other species can be studied with respect to electron transfer, homodimer or heterodimer interactions, or for construction of biological-based chips for standardizing cytochrome P450 metabolism or for high-throughput screening of pharmaceutical agents. Previous studies have generally immobilized P450 enzymes in a matrix or on a surface. Here, we have attached CYP2C9 to gold substrates such that the resulting construct maintains the ability to bind and metabolize substrates in the presence of NADPH and cytochrome P450 reductase. The activity of these chips is directly dependent upon the linkers used to attach CYP2C9 and to the presence of key molecules in the active site during enzyme attachment. A novel method to detect substrate-enzyme binding, namely, superconducting quantum interference device (SQUID) magnetometry, was used to monitor the binding of substrates. Most significantly, conditions that allow measurable CYP2C9 metabolism to occur have been developed.  相似文献   

18.
The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.  相似文献   

19.
Cyclic voltabsorptometry is used for the first time to distinguish and characterize electrochemically the active (P450) and inactive (P420) forms of cytochromes P450 immobilized on an electrode during voltammetry experiments. This was achieved by using the heme domain (BMP) of the bacterial cytochrome P450 BM3 from Bacillus megaterium (CYP102A1) immobilized on mesopouros tin-oxide (SnO2) electrodes. We demonstrate that the formation of either the P450 form or the P420 one can be obtained by modifying the mesoporous electrode surface with polycations with different properties such as polyethylenimmine (PEI) and polydiallyldimethylammonium chloride (PDDA). Potential step spectroelectrochemistry allowed measurement of reduction potentials of the active P450 form. Values of -0.39+/-0.01 V and -0.58+/-0.01 V (both versus Ag/AgCl) were calculated for the active P450 form immobilized on the BMP/PDDA-SnO2 and BMP/PEI-SnO2 electrodes, respectively. The cyclic voltabsorptometric experiments showed how, when both the active and inactive forms are present on the PEI film, the inactive P420 species tends to dominate the cyclic voltammetric signal.  相似文献   

20.
Cytochrome P450s constitute a highly fascinating superfamily of enzymes which catalyze a broad range of reactions. They are essential for drug metabolism and promise industrial applications in biotechnology and biosensing. The constant search for cytochrome P450 enzymes with enhanced catalytic performances has generated a large body of research. This review will concentrate on two key aspects related to the identification and improvement of cytochrome P450 biocatalysts, namely the engineering and assaying of these enzymes. To this end, recent advances in cytochrome P450 development are reported and commonly used screening methods are surveyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号