首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel alternating copolymer-based organic phase was synthesized using a new N-substituted maleimide monomer for the development of alternating copolymer-grafted silica for high-performance liquid chromatographic applications. This new monomer (DGMI) was copolymerized with octadecyl acrylate (ODA) from 3-mercaptopropyltrimethoxysilane-grafted silica to produce Sil-poly(ODA-alt-DGMI). The organic phase was characterized by the elemental analysis and the diffuse reflectance infrared Fourier transform spectroscopy. Tocopherol isomers and steroids were used as analytes for the evaluation of the chromatographic selectivity profiles of this novel stationary phase. The selectivity of this column was then compared with a polymeric ODS column and previously developed another alternating copolymer-grafted silica (without the glutamide-derived moiety) column, Sil-poly(ODA-alt-N-octadecylmaleimide). The complete baseline separation of tocopherol isomers in an isocratic mode has been achieved within 25 min with the Sil-poly(ODA-alt-DGMI). The separation of eight kinds of estrogenic steroids and corticoids has also been achieved in an isocratic mode with this column. Significant differences in separation selectivity between Sil-poly(ODA-alt-DGMI) and polymeric ODS columns were observed towards the steroids, and compared with the reference columns, a better separation profile for these analytes was obtained with the Sil-poly(ODA-alt-DGMI). The results of this investigation indicated that the enhancement of selectivity of Sil-poly(ODA-alt-DGMI) towards the test analytes arose from the multiple interaction mechanism such as hydrophobic effect, carbonyl-π and hydrogen-bonding interactions, and such integrated interactions originated from the addition of two amide groups in the N-substituted maleimide monomer.  相似文献   

2.
The interaction between steroids and cholesterol is studied by reversed-phase thin-layer chromatography (TLC) using TLC plates impregnated by cholesterol and methanol-water mixtures as the eluents. The R(M) values obtained are in linear correlation with the methanol concentration of the eluent. The slope obtained from the linear regression analysis, which is characteristic of the strength of interaction, is determined. Stepwise regression and principal component analysis are carried out to find a relationship between the physicochemical parameters of steroid drugs and the strength of the interaction, which is followed by nonlinear mapping and cluster analysis to visualize the obtained results. The results show that steric and electronic parameters of the steroid drugs have a significant effect on the strength of the interaction between these structurally similar molecules.  相似文献   

3.
Phosphorylated carbohydrates are important intracellular metabolites and thus of prime interest in metabolomics research. Complications in their analysis arise from the existence of structural isomers that do have similar fragmentation patterns in MS/MS and are hard to resolve chromatographically. Herein, we present selective methods for the liquid chromatographic separation of sugar phosphates, such as hexose and pentose phosphates, 2‐ and 3‐phosphoglycerate, dihydroxyacetone phosphate and glyceraldehyde 3‐phosphate, as well as glucosamine 1‐ and 6‐phosphate utilizing mixed‐mode chromatography with reversed‐phase/weak anion‐exchangers and a charged aerosol detector. The best results were obtained when the reversed‐phase/weak anion‐exchanger column was operated under hydrophilic interaction liquid chromatography elution conditions. The effects of various chromatographic parameters were examined and are discussed on the basis of a simple stoichiometric displacement model for explaining ion‐exchange processes. Employed acidic conditions have led to the complete separation of α‐ and β‐anomers of glucose 6‐phosphate at low temperature. The anomers coeluted in a single peak at elevated temperatures (>40°C) (peak coalescence), while at intermediate temperatures on‐column interconversion with a plateau in‐between resolved anomer peaks was observed with apparent reaction rate constants between 0.1 and 27.8×10?4 s?1. Dynamic HPLC under specified conditions enabled to investigate mutarotation of phosphorylated carbohydrates, their interconversion kinetics, and energy barriers for interconversion. A complex mixture of six hexose phosphate structural isomers could be resolved almost completely.  相似文献   

4.
With the discovery of cyclo[18]carbon, related theoretical research has become a very hot topic. Due to its unique molecular structure, many derivatives have been derived, especially its isoelectronic molecule cyclo B9N9. This work focused on the interaction between cyclo B9N9 molecules and explored the nature of their interaction. The interaction of the dimer of cyclo B9N9 was studied, quantum chemical calculation and wave function analysis were carried out, and compared with cyclo[18]carbon to find its commonness. It showed that the interaction between the cyclo B9N9 dimers is a weak electron generating stacking interaction. In addition, the adsorption of cyclo B9N9 was studied, and the interaction of graphene analogues hexagonal boron nitride (h-BN). Through calculation and analysis, it was found that the adsorption of cyclo B9N9 was much stronger than that of cyclo[18]carbon. In another sense, the π–π stacking interaction of boron nitrogen structure is stronger than that of carbon. To further validate this commonality, B6N6 was selected for the same calculation, and similar conclusions were obtained. It was also found that the more Boron nitrogen (BN), the stronger the stacking interaction.  相似文献   

5.
Stoichiometric amounts of triethylamine (TEA) were found to enhance the chiral induction by -cyclodextrin (-CD) in the reduction of acetophenone (ACPH) by aqueous NaBH4. The enantioselectivity obtained depends upon the molar ratio -CD:ACPH:TEA. Evidence for the formation of a three-component inclusion compound was obtained from detailled1H and2H NAM studies. The restriction of the molecular motion of the prochiral center probably accounts for the strong enhancement of the chiral induction observed.  相似文献   

6.
 A computational study of the mechanism of host–guest complexation between quaternary ammonium compounds and squaramido-based tripodal receptors has been carried out. Semiempirical molecular orbital calculations, which are in qualitative agreement with experimental results have been performed using the PM3 Hamiltonian. Molecular interaction potential (MIP) maps were used to analyze the suitability of both host and guest binding units for a high-affinity recognition process. MIP calculations were computed from PM3 wavefunctions of the corresponding ammonium cations and dimethyl squaramide as a model compound for the hydrogen-bond-acceptor unit of the receptors. MIP analyses are helpful for understanding the host–guest process from the point of view of the double-complementarity principle. Received: 23 June 1999 / Accepted: 22 September 1999 / Published online: 17 January 2000  相似文献   

7.
We implemented an interaction site model integral equation for rigid molecules based on a density-functional theory where the molecular orientation is explicitly considered. In this implementation of the integral equation, multiple integral of the degree of freedom of the molecular orientation is performed using efficient quadrature methods, so that the site-site pair correlation functions are evaluated exactly in the limit of low density. We apply this method to Cl(2), HCl, and H(2)O molecular fluids that have been investigated by several integral equation studies using various models. The site-site pair correlation functions obtained from the integral equation are in good agreement with the one from a simulation of these molecules. Rotational invariant coefficients, which characterize the microscopic structure of molecular fluids, are determined from the integral equation and the simulation in order to investigate the accuracy of the integral equation.  相似文献   

8.
Protein C (PC), a 62 kDa multi-modular zymogen, is activated to an anticoagulant serine protease (activated PC or APC) by thrombin bound to thrombomodulin on the surface of endothelial cells. PC/APC interacts with many proteins and the characterisation of these interactions is not trivial. However, molecular modelling methods help to study these complex biological processes and provide basis for rational experimental design and interpretation of the results. PC/APC consists of a Gla domain followed by two EGF modules and a serine protease domain. In this report, we present two structural models for full-length APC and two equivalent models for full-length PC, based on the X-ray structures of Gla-domainless APC and of known serine protease zymogens. The overall elongated shape of the models is further cross-validated using size exclusion chromatography which allows evaluation of the Stokes radius (rs for PC = 33.15 Å rs for APC = 34.19 Å), frictional ratio and axial ratio. We then propose potential binding sites at the surface of PC/APC using surface hydrophobicity as a determinant of the preferred sites of intermolecular recognition. Most of the predicted binding sites are consistent with previously reported experimental data, while some clusters highlight new regions that should be involved in protein-protein interactions.  相似文献   

9.
10.
The fracture behavior of carbon black-filled natural rubber compounds, differing in filler content, was studied performing tensile tests in biaxial loading conditions, using a central notched cross-shaped specimen. The test consisted of two steps: a drawing step was initially performed loading the specimen in the direction parallel to the notch plane, up to different draw ratios, and then the specimen was loaded in the direction normal to the notch plane up to fracture. Using a fracture mechanics approach, the fracture toughness was evaluated as a function of the draw ratio applied in the drawing step. A correlation between the fracture phenomenology observed and molecular orientability and orientation was attempted. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1509–1515, 2010  相似文献   

11.
The adsorption of molecular oxygen at defective edge sites of zigzag and armchair graphite surfaces has been investigated by adopting cluster models in conjunction with density functional theory. Several different types of chemisorbed O2 species are identified. It was found that the defect edge sites exhibit the significant catalytic role toward the adsorption and activation of molecular oxygen. The O2 molecule is not only able to strongly bind to these edge sites, but the O–O bond strength is obviously weakened. Moreover, the calculated adsorption energy for O2 adsorbed on the clean graphite basal surface is fairly consistent with the weak interaction nature of O2 with the surface observed in the experiment, indicating one-layer cluster model is an effective way to study O2 adsorption on graphite surface in terms of accuracy and computational cost, which is in agreement with previous experience. Whereas, we note that the local detailed arrangement of edge carbon atoms can play an important effect on the adsorption of O2 on defect surfaces.  相似文献   

12.
A quantitative analysis of the interaction sites of the anti-Alzheimer drug galanthamine with molecular probes (water and benzene molecules) representative of its surroundings in the binding site of acetylcholinesterase (AChE) has been realized through pairwise potentials calculations and quantum chemistry. This strategy allows a full and accurate exploration of the galanthamine potential energy surface of interaction. Significantly different results are obtained according to the distances of approaches between the various molecular fragments and the conformation of the galanthamine N-methyl substituent. The geometry of the most relevant complexes has then been fully optimized through MPWB1K/6-31?+?G(d,p) calculations, final energies being recomputed at the LMP2/aug-cc-pVTZ(-f) level of theory. Unexpectedly, galanthamine is found to interact mainly from its hydrogen-bond donor groups. Among those, CH groups in the vicinity of the ammonium group are prominent. The trends obtained provide rationales to the predilection of the equatorial orientation of the galanthamine N-methyl substituent for binding to AChE. The analysis of the interaction energies pointed out the independence between the various interaction sites and the rigid character of galanthamine. The comparison between the cluster calculations and the crystallographic observations in galanthamine-AChE co-crystals allows the validation of the theoretical methodology. In particular, the positions of several water molecules appearing as strongly conserved in galanthamine-AChE co-crystals are predicted by the calculations. Moreover, the experimental position and orientation of lateral chains of functionally important aminoacid residues are in close agreement with the ones predicted theoretically. Our study provides relevant information for a rational drug design of galanthamine based AChE inhibitors.  相似文献   

13.
Two beta-cyclodextrin (beta-CD) derivatives bearing steroid groups (1 and 2) were synthesized by the condensation of mono(6-aminoethylamino-6-deoxy)-beta-CD with cholic acid and deoxycholic acid, respectively, and their original conformations and binding behavior to the organic anion of naphthalenesulfonate derivatives were investigated by using 1H NMR spectroscopy and spectrofluorometric titration in combination with computational methods. The 2D NMR experiments reveal that the steroid groups attached to the beta-CD rim could be deeply embedded in the beta-CD cavity to form the intramolecular (for 1) or intermolecular (for 2) inclusion complexes in aqueous solution. Upon complexation with naphthalenesulfonate derivatives, modified beta-CDs display two obviously different binding modes, that is, the competitive inclusion mode and the induced-fit inclusion mode, which is consistent with the results of molecular modeling study. The two modes and the strict size/shape fitting relationship between the hosts and guests reasonably explain the different binding behaviors and molecular selectivity of host beta-CDs 1 and 2 toward the naphthalenesulfonate guests. Therefore, the cholic acid- or deoxycholic acid-modified beta-CDs could effectively recognize the size/shape of guest molecules as compared with the parent beta-CD, giving good molecular selectivity up to 24.9 for the disodium 2,6-naphthalenedisulfonate/disodium 1,5-naphthalenedisulfonate pair by the host 1.  相似文献   

14.
Asymmetric polysulfone hollow fibre membranes for gas separation were spun using a dry/wet spinning process. An optimised four component dope solution was used: 22% (w/w) polysulfone, 31.8% (w/w) N,N-dimethylacetamide, 31.8% (w/ w) tetrahydrofuran and 14.4% (w/w) ethanol. Fibres were spun at low- and high-dope extrusion rates and hence at different levels of shear. Molecular orientation in the active layer of the membranes was measured by plane-polarised infrared spectroscopy. Gas permeation properties (permeability and selectivity) were evaluated using pure carbon dioxide and methane. The spectroscopy indicated that increased molecular orientation occurs in the high-shear membranes. The selectivities of these membranes were heightened and even surpassed the recognised intrinsic selectivity of the membrane polymer. The results suggest that increased shear during spinning increases molecular orientation and, in turn, enhances selectivity.  相似文献   

15.
The current-voltage and the conductance-voltage characteristics are analyzed for a particular type of molecular wire embedded between two electrodes. The wire is characterized by internal molecular units where the lowest occupied molecular orbital (LUMO) levels are positioned much above the Fermi energy of the electrodes, as well as above the LUMO levels of the terminal wire units. The latter act as specific intermediate donor and acceptor sites which in turn control the current formation via the superexchange and sequential electron transfer mechanisms. According to the chosen wire structure, intramolecular multiphonon processes may block the superexchange component of the interelectrode current, resulting in a negative differential resistance of the molecular wire. A pronounced current rectification appears if (i) the superexchange component dominates the electron transfer between the terminal sites and if (ii) the multiphonon suppression of distant superexchange charge hopping events between those sites is nonsymmetric.  相似文献   

16.
Structural Chemistry - Recently, the SARS-CoV-2 (COVID-19) pandemic virus has been spreading throughout the world. Until now, no certified drugs have been discovered to efficiently inhibit the...  相似文献   

17.
18.
Lei X  Kong L  Zou H  Ma H  Yang L 《Journal of chromatography. A》2009,1216(11):2179-2184
An efficient and convenient method, biological fingerprinting chromatogram analysis is presented, which is applied to the comparison of fingerprinting chromatograms of the extracts of Chinese herbal medicines after the interaction with biological systems (cell, DNA, protein, etc.). The method was established for the purpose of screening and analysis of the multiple bioactive compounds in herbal medicines. In this work, microdialysis sampling combined with high performance liquid chromatography-mass spectrometry (HPLC-MS) was studied for binding property of MCF-7 and multidrug resistant MCF-7 cell systems. The results showed that pseudolaric acid A (PAA) and pseudolaric acid B (PAB) in the cortex of Pseudolarix kaempferi (Lamb.) Gorden can easily bind to the MCF-7 cells ranging from 0 to 16.3% (PAA) and from 0 to 35.7% (PAB), and another compound, tetrandrine (TET) from the root of Stephania tetrandrae S. Moore, showed higher binding activity with multidrug resistant MCF-7 cells ranging from 0 to 39.9%.  相似文献   

19.
Can a benzene molecule differentiate between two isomeric carbohydrates? It is generally accepted that two factors govern molecular recognition: complementarity and preorganization. Preorganization requires the presence of cavities for positioning the host's groups of complementary nature to those of the guest. This study shows that, in fact, groups should be complementary to recognize each other (for the case presented here, it is controlled by the CH/pi interaction) but preorganization is not essential. Since weak interactions have their origin in dispersion forces, they also have impact on the enthalpic term of the free energy, so it was considered that their participation can be demonstrated by measuring the energy involved. For recognition to happen, two conditions must be satisfied: specificity and associated stabilizing energy. In this study we evaluated the heat of dissolution of different carbohydrates such as methyl 2,3,4,6-tetra-O-methyl-alpha-d-mannopyranoside and methyl 2,3,4,6-tetra-O-methyl-beta-d-galactopyranoside using different aromatic solvents. The solvation enthalpies in benzene were -78.8 +/- 3.9 and -88.7 +/- 5.5 kJ mol(-1) for each carbohydrate, respectively; and these values yielded a CH/pi energy of interaction of 9.9 kJ mol(-1). In addition, NMR studies of the effect of the addition of benzene to chloroform solutions of the two carbohydrates showed that benzene specifically interacts with the hydrogen atoms of the pyranose ring at positions 3, 4, and 5 located on the alpha face of the methyl-beta-galactoside, so it is, in fact, able to recognize it. Thus, the interactions between carbohydrates and the aromatic residues of proteins occur in the absence of the confinement generated by the protein structure. By experimentally measuring the energy associated with this interaction and comparing it to theoretical calculations, it was also possible to unequivocally determine the existence of CH/pi interactions between carbohydrates and proteins.  相似文献   

20.
In the present study, we applied for the first time (31)P diffusion NMR to resolve different species obtained by the addition of organophosphorus compounds (OP) such as diisopropyl phosphorofluoridate (DFP) or 1-pyrenebutyl phosphorodichloridate (PBPDC) to alpha-chymotrypsin (Cht). (31)P diffusion NMR was used since the products of these reactions constitute a mixture of OP-covalent conjugates of the enzyme and OP-containing hydrolysis products that have noninformative (1)H NMR spectra. It was shown that the peak, attributed to the covalent native diisopropylphosphoryl-Cht (DIP-Cht) conjugate by chemical shift considerations, has a greater diffusion coefficient (D = (0.65 +/- 0.01) x 10(-5) cm(2) s(-1)) than expected from its molecular mass (approximately 25 kDa). This peak was therefore suggested to consist of at least two superimposed signals of diisopropyl phosphoryl (DIP) pools of high and low molecular weights that happen to have the same chemical shift. This conclusion was substantiated by the use of DMSO-d(6) that separated the overlapping signals. Diffusion measurements performed on the extensively dialyzed and unfolded DIP-Cht conjugate still resulted in a high diffusion coefficient ((0.30 +/- 0.05) x 10(-5) cm(2) s(-1)) relative to the assumed molecular mass. This observation was attributed to a dynamic dealkylation at the OP moiety (i.e., aging) that occurred during the relatively long diffusion measurements, where DIP-Cht was converted to the corresponding monoisopropyl phosphoryl Cht (MIP-Cht) conjugate. Homogeneous aged forms of OP-Cht were obtained by use of DFP and heat-induced dealkylation of DIP-Cht, and by PBPDC that provided the aged form via the hydrolysis of a P-Cl bond (PBP-Cht). The thermally stable aged conjugates enabled a reliable determination of the diffusion coefficients over several days of data acquisition, and the values found were (0.052 +/- 0.002) x 10(-5) cm(2) s(-1) and (0.054 +/-0.004) x 10(-5) cm(2) s(-1) for the MIP-Cht and the PBP-Cht adducts, respectively, values in the range expected for a species with a molecular weight of 25 kDa. The advantages and limitations of (31)P diffusion NMR in corroborating the type of species that prevail in such systems are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号