首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the number of trials until the first k consecutive successes in a sequence of Bernoulli trials with success probability p is known as geometric distribution of order k. Let T k be a random variable that follows a geometric distribution of order k, and Y 1,Y 2,… a sequence of independent and identically distributed discrete random variables which are independent of T k . In the present article we develop some results on the distribution of the compound random variable \(S_{k} =\sum_{t=1}^{T_{k}}Y_{t}\).  相似文献   

2.
Call a sequence of k Boolean variables or their negations a k-tuple. For a set V of n Boolean variables, let T k (V) denote the set of all 2 k n k possible k-tuples on V. Randomly generate a set C of k-tuples by including every k-tuple in T k (V) independently with probability p, and let Q be a given set of q “bad” tuple assignments. An instance I = (C,Q) is called satisfiable if there exists an assignment that does not set any of the k-tuples in C to a bad tuple assignment in Q. Suppose that θ, q > 0 are fixed and ε = ε(n) > 0 be such that εlnn/lnlnn→∞. Let k ≥ (1 + θ) log2 n and let \({p_0} = \frac{{\ln 2}}{{q{n^{k - 1}}}}\). We prove that
$$\mathop {\lim }\limits_{n \to \infty } P\left[ {I is satisfiable} \right] = \left\{ {\begin{array}{*{20}c} {1,} & {p \leqslant (1 - \varepsilon )p_0 ,} \\ {0,} & {p \geqslant (1 + \varepsilon )p_0 .} \\ \end{array} } \right.$$
  相似文献   

3.
We prove an upper bound for the number of representations of a positive integer N as the sum of four kth powers of integers of size at most B, using a new version of the determinant method developed by Heath-Brown, along with recent results by Salberger on the density of integral points on affine surfaces. More generally we consider representations by any integral diagonal form. The upper bound has the form \({O_{N}(B^{c/\sqrt{k}})}\), whereas earlier versions of the determinant method would produce an exponent for B of order k ?1/3 (uniformly in N) in this case. Furthermore, we prove that the number of representations of a positive integer N as a sum of four kth powers of non-negative integers is at most \({O_{\varepsilon}(N^{1/k+2/k^{3/2}+\varepsilon})}\) for k ≥ 3, improving upon bounds by Wisdom.  相似文献   

4.
A 2-coloring of the n-cube in the n-dimensional Euclidean space can be considered as an assignment of weights of 1 or 0 to the vertices. Such a colored n-cube is said to be balanced if its center of mass coincides with its geometric center. Let B n,2k be the number of balanced 2-colorings of the n-cube with 2k vertices having weight 1. Palmer, Read, and Robinson conjectured that for n≥1, the sequence \(\{B_{n,2k}\}_{k=0,1,\ldots,2^{n-1}}\) is symmetric and unimodal. We give a proof of this conjecture. We also propose a conjecture on the log-concavity of B n,2k for fixed k, and by probabilistic method we show that it holds when n is sufficiently large.  相似文献   

5.
Let G be an abelian group of order n. The sum of subsets A1,...,Ak of G is defined as the collection of all sums of k elements from A1,...,Ak; i.e., A1 + A2 + · · · + Ak = {a1 + · · · + ak | a1A1,..., akAk}. A subset representable as the sum of k subsets of G is a k-sumset. We consider the problem of the number of k-sumsets in an abelian group G. It is obvious that each subset A in G is a k-sumset since A is representable as A = A1 + · · · + Ak, where A1 = A and A2 = · · · = Ak = {0}. Thus, the number of k-sumsets is equal to the number of all subsets of G. But, if we introduce a constraint on the size of the summands A1,...,Ak then the number of k-sumsets becomes substantially smaller. A lower and upper asymptotic bounds of the number of k-sumsets in abelian groups are obtained provided that there exists a summand Ai such that |Ai| = n logqn and |A1 +· · ·+ Ai-1 + Ai+1 + · · ·+Ak| = n logqn, where q = -1/8 and i ∈ {1,..., k}.  相似文献   

6.
In this paper, we study the k-quasi-M-hyponormal operator and mainly prove that if T is a k-quasi-M-hyponormal operator, then \(\sigma _{ja}(T)\backslash \{0\}=\sigma _{a}(T)\backslash \{0\}\), and the spectrum is continuous on the class of all k-quasi-M-hyponormal operators; let \(d_{AB}\in B(B(H))\) denote either the generalized derivation \(\delta _{AB}= L_{A}-R_{B}\) or the elementary operator \(\Delta _{AB} =L_{A}R_{B}- I\), we show that if A and \(B^{*}\) are k-quasi-M-hyponormal operators, then \(d_{AB}\) is polaroid and generalized Weyl’s theorem holds for \(f(d_{AB})\), where f is an analytic function on \(\sigma (d_{AB})\) and f is not constant on each connected component of the open set U containing \(\sigma (d_{AB})\). In additon, we discuss the hyperinvariant subspace problem for k-quasi-M-hyponormal operators.  相似文献   

7.
We study the hybridizable discontinuous Galerkin (HDG) method for the spatial discretization of time fractional diffusion models with Caputo derivative of order 0 < α < 1. For each time t ∈ [0, T], when the HDG approximations are taken to be piecewise polynomials of degree k ≥ 0 on the spatial domain Ω, the approximations to the exact solution u in the L (0, T; L 2(Ω))-norm and to ?u in the \(L_{\infty }(0, \textit {T}; \mathbf {L}_{2}({\Omega }))\)-norm are proven to converge with the rate h k+1 provided that u is sufficiently regular, where h is the maximum diameter of the elements of the mesh. Moreover, for k ≥ 1, we obtain a superconvergence result which allows us to compute, in an elementwise manner, a new approximation for u converging with a rate h k+2 (ignoring the logarithmic factor), for quasi-uniform spatial meshes. Numerical experiments validating the theoretical results are displayed.  相似文献   

8.
Our aim in this paper is to address the following question: of the 22 n Boolean functions onn variables, how many are expressible as 2-SAT formulae? In other words, we wish to count the number of different instances of 2-SAT, counting two instances as equivalent if they have the same set of satisfying assignments. Viewed geometrically, we are asking for the number of subsets of then-dimensional discrete cube that are unions of (n-2)-dimensional subcubes.There is a trivial upper bound of 24(n/2), the number of 2-SAT formulae. There is also an obvious lower bound of 2(n/2), corresponding to the monotone 2-SAT formulae. Our main result is that, rather surprisingly, this lower bound gives the correct speed: the number of 2-SAT functions is 2(1+0(1)) n 2 2.  相似文献   

9.
Here we show that every normal band N can be embedded into the normal band \(\mathcal {B(S)}\) of all k-bi-ideals, the left part \(N/ \mathcal {R}\) of N into the left normal band \(\mathcal {R(S)}\) of all right k-ideals, the right part \(N/ \mathcal {L}\) of N into the right normal band \(\mathcal {L(S)}\) of all left k-ideals, and the greatest semilattice homomorphic image \(N/ \mathcal {J}\) of N into the semilattice of all k-ideals of a same k-regular and intra k-regular semiring S.  相似文献   

10.
We derive a combinatorial multisum expression for the number D(n, k) of partitions of n with Durfee square of order k. An immediate corollary is therefore a combinatorial formula for p(n), the number of partitions of n. We then study D(n, k) as a quasipolynomial. We consider the natural polynomial approximation \({\tilde{D}(n, k)}\) to the quasipolynomial representation of D(n, k). Numerically, the sum \({\sum_{1\leq k \leq \sqrt{n}} \tilde{D}(n, k)}\) appears to be extremely close to the initial term of the Hardy-Ramanujan-Rademacher convergent series for p(n).  相似文献   

11.
We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in ?3. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m 1,m 2,…,m k facets, respectively, is bounded from above by \(\sum_{1\leq i. Given k positive integers m 1,m 2,…,m k , we describe how to construct k polytopes with corresponding number of facets, such that the number of facets of their Minkowski sum is exactly \(\sum_{1\leq i. When k=2, for example, the expression above reduces to 4m 1 m 2?9m 1?9m 2+26.  相似文献   

12.
The double loop network (DLN) is a circulant digraph with n nodes and outdegree 2. It is an important topological structure of computer interconnection networks and has been widely used in the designing of local area networks and distributed systems. Given the number n of nodes, how to construct a DLN which has minimum diameter? This problem has attracted great attention. A related and longtime unsolved problem is for any given non-negative integer k, is there an infinite family of k-tight optimal DLN? In this paper, two main results are obtained (1) for any k ≥ 0, the infinite families of k-tight optimal DLN can be constructed, where the number n(k,e,c) of their nodes is a polynomial of degree 2 in e with integral coefficients containing a parameter c. (2) for any k ≥ 0,an infinite family of singular k-tight optimal DLN can be constructed.  相似文献   

13.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

14.
An edge-coloring of a graph G is an assignment of colors to all the edges of G. A g c -coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v) times. The maximum integer k such that G has a g c -coloring with k colors is called the g c -chromatic index of G and denoted by \(\chi\prime_{g_{c}}\)(G). In this paper, we extend a result on edge-covering coloring of Zhang and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy \(\chi\prime_{g_{c}}\)(G) = δ g (G), where \(\delta_{g}\left(G\right) = min_{v\epsilon V (G)}\left\{\lfloor\frac{d\left(v\right)}{g\left(v\right)}\rfloor\right\}\).  相似文献   

15.
For a simple graph G on n vertices and an integer k with 1 ? k ? n, denote by \(\mathcal{S}^+_k\) (G) the sum of k largest signless Laplacian eigenvalues of G. It was conjectured that \(\mathcal{S}^+_k(G)\leqslant{e}(G)+(^{k+1}_{\;\;2})\) (G) ? e(G) + (k+1 2), where e(G) is the number of edges of G. This conjecture has been proved to be true for all graphs when k ∈ {1, 2, n ? 1, n}, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all k). In this note, this conjecture is proved to be true for all graphs when k = n ? 2, and for some new classes of graphs.  相似文献   

16.
Linear complexity and k-error linear complexity are the important measures for sequences in stream ciphers. This paper discusses the asymptotic behavior of the normalized k-error linear complexity \({L_{n,k}(\underline{s})/n}\) of random binary sequences \({\underline{s}}\) , which is based on one of Niederreiter’s open problems. For k = n θ, where 0 ≤ θ ≤ 1/2 is a fixed ratio, the lower and upper bounds on accumulation points of \({L_{n,k}(\underline{s})/n}\) are derived, which holds with probability 1. On the other hand, for any fixed k it is shown that \({\lim_{n\rightarrow\infty} L_{n,k}(\underline{s})/n = 1/2}\) holds with probability 1. The asymptotic bounds on the expected value of normalized k-error linear complexity of binary sequences are also presented.  相似文献   

17.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

18.
Let k, n, and r be positive integers with k < n and \({r \leq \lfloor \frac{n}{k} \rfloor}\). We determine the facets of the r-stable n, k-hypersimplex. As a result, it turns out that the r-stable n, k-hypersimplex has exactly 2n facets for every \({r < \lfloor \frac{n}{k} \rfloor}\). We then utilize the equations of the facets to study when the r-stable hypersimplex is Gorenstein. For every k > 0 we identify an infinite collection of Gorenstein r-stable hypersimplices, consequently expanding the collection of r-stable hypersimplices known to have unimodal Ehrhart \({\delta}\)-vectors.  相似文献   

19.
Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G, a hereditary graph property P and l ? 1 we define \(X{'_{P,l}}\)(G) to be the minimum number of colours needed to properly colour the edges of G, such that any subgraph of G induced by edges coloured by (at most) l colours is in P. We present a necessary and sufficient condition for the existence of \(X{'_{P,l}}\)(G). We focus on edge-colourings of graphs with respect to the hereditary properties Ok and Sk, where Ok contains all graphs whose components have order at most k+1, and Sk contains all graphs of maximum degree at most k. We determine the value of \(X{'_{{S_k},l}}(G)\) for any graph G, k ? 1, l ? 1, and we present a number of results on \(X{'_{{O_k},l}}(G)\).  相似文献   

20.
The main result of this paper shows that if g(t) is a complete non-singular solution of the normalized Ricci flow on a noncompact 4-manifold M of finite volume, then the Euler characteristic number χ(M)≥0. Moreover, if χ(M)≠0, there exists a sequence of times t k →∞, a double sequence of points \(\{p_{k,l}\}_{l=1}^{N}\) and domains \(\{U_{k,l}\}_{l=1}^{N}\) with p k,lU k,l satisfying the following:
  1. (i)
    \(\mathrm{dist}_{g(t_{k})}(p_{k,l_{1}},p_{k,l_{2}})\rightarrow\infty\) as k→∞, for any fixed l1l2;
     
  2. (ii)
    for each l, (U k,l,g(t k ),p k,l) converges in the \(C_{\mathrm{loc}}^{\infty}\) sense to a complete negative Einstein manifold (M ∞,l ,g ∞,l ,p ∞,l ) when k→∞;
     
  3. (iii)
    \(\operatorname {Vol}_{g(t_{k})}(M\backslash\bigcup_{l=1}^{N}U_{k,l})\rightarrow0\) as k→∞.
     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号