首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic and static light scattering were applied to the determination of the stability ratio and fractal dimension of kaolinite (KGa-2) at different kaolinite or/and electrolyte concentrations at pH 9.5. Dynamic light scattering was used to measure the kinetics of early stage aggregation to determine the stability ratio, W, as well as the cluster sizes which determine the fractal regime. Static light scattering was used to measure the fractal dimension, D(f). Results show that the two classes of "universality" (Lin et al. Nature 1989, 339, 360) characterizing the diffusion- and reaction-limited regimes of cluster-cluster aggregation do apply to colloidal kaolinite as limit cases when W approximately 1 or W > 100, respectively. In the intermediate regime where 5 < W < 100, the growth of the aggregate radius showed a power-law behavior similar to diffusion-limited cluster aggregation. For the intermediate aggregation regime, a scaling relation between fractal dimension and stability ratio, reflecting a continuous increase in particle packing density in the aggregate as the sticking probability of particles was reduced, was demonstrated.  相似文献   

2.
The surface charge densities of the silica face surface and the alumina face surface of kaolinite particles, recently determined from surface force measurements using atomic force microscopy, show a distinct dependence on the pH of the system. The silica face was found to be negatively charged at pH>4, whereas the alumina face surface was found to be positively charged at pH<6, and negatively charged at pH>8. The surface charge densities of the silica face and the alumina face were utilized in this study to determine the interaction energies between different surfaces of kaolinite particles. Results indicate that the silica face-alumina face interaction is dominant for kaolinite particle aggregation at low pH. This face-face association increases the stacking of kaolinite layers, and thereby promotes the edge-face (edge-silica face and edge-alumina face) and face-face (silica face-alumina face) associations with increasing pH, and hence the maximum shear-yield stress at pH 5-5.5. With further increase in pH, the face-face and edge-face association decreases due to increasing surface charge density on the silica face and the edge surfaces, and decreasing surface charge density on the alumina face. At high pH, all kaolinite surfaces become negatively charged, kaolinite particles are dispersed, and the suspension is stabilized. The face-face association at low pH has been confirmed from cryo-SEM images of kaolinite aggregates taken from suspension which show that the particles are mostly organized in a face-face and edge-face manner. At higher pH conditions, the cryo-SEM images of the kaolinite aggregates reveal a lower degree of consolidation and the edge-edge association is evident.  相似文献   

3.
When the percentage of filler in paper is increased, the optical properties are improved and the production cost lowered. However, fillers weaken paper strength by decreasing the fibre–fibre bonded area. Little is known about the optimum filler floc size or filler floc properties to allow developing optimum paper characteristics. Consequently, the kinetics of aggregation of scalenohedral precipitated calcium carbonate (PCC) filler was studied using various polymers (flocculants, coagulants and dry strength agents). The sodium salt of partially hydrolysed polyvinyl formamide copolymerized with acrylic acid (PVFA/NaAA) or C-starch lead to floc sizes, less sensitive to dosage within a certain range. Results from stability ratios correlate with PCC particle size. The change in particle size measured by photometric dispersion analysis (PDA) correlates well with the change in PCC particle size measured by light scattering/diffraction. Kinetic calculations show the orthokinetic aggregation times to be consistent with the experimental PDA results. The main uncertainty in the orthokinetic times is estimating the effective shear rate. It is proposed that the bridging surface area of PCC particles, the area which can form bonds between PCC particles or aggregates, should be used to study the kinetics of PCC aggregation, and not the total or projected surface area. In polymer induced aggregation, the PCC particle size increases to a plateau value with increasing polymer dosage. Two regions are most pronounced for C-PAM, PVFA/NaAA and A-starch. Region I corresponds to bridging flocculation. Region II is where the particle size reaches a plateau, and not the expected maximum predicted by classical polymer bridging theory or charge neutralisation theory, likely because of a competition between particle aggregation and polymer adsorption.  相似文献   

4.
The hydrophobic agglomeration kinetics of kaolinite has been studied through the in-situ turbidity meter measurement system. The effects of surfactant dosage, stirring rate and particle size on the hydrophobic agglomeration dynamics have been investigated. Appropriate surfactant concentrations provided the strongest hydrophobicity, modest stirring rate offered a higher agglomerates formation rate and a lower disruption rate, and smaller particles had lower energy barrier and higher attachment efficiency. The best hydrophobic agglomeration conditions have been determined and a kinetic model of hydrophobic agglomeration has been proposed by experimental results. The kinetic model has been turned out to be fitted to the dynamic process well and can characterize as well as assess the hydrophobic agglomeration kinetics appropriately.  相似文献   

5.
煤系高岭岩中可燃矿物与不可燃矿物的共生组合增加了可燃矿物燃烧的复杂性,研究这类燃料的燃烧特性对充分利用煤矸石资源有积极的意义。参照FCC催化剂结焦燃烧机理,基于一系列假设,建立了煤系高岭岩中固定碳燃烧反应模型—未反应收缩核模型。采用空气气氛下等温热重法研究了煤系高岭土中固定碳的燃烧反应。研究表明,低于700℃,反应的控制步骤是煤系高岭岩中固定碳燃烧界面化学反应。通过对非均一颗粒体系的未反应核收缩模型计算分析,获得煤系高岭岩中固定碳燃烧反应动力学参数,活化能(E)为100.12kJ/mol,频率因子(A)为2.27×106s-1。  相似文献   

6.
The structure of premixed free one-dimensional laminar ethane-air flames was investigated by means of numerical simulations performed with a detailed mechanism (GRI-Mech version 3.0) by means of COSILAB package. The work provides data on ethane-air mixtures with a wide range of concentrations ([C2H6] = 3.0–9.5 vol.%) at initial temperatures between 300 and 550 K and initial pressures between 1 and 10 bar. The simulations deliver the laminar burning velocities and the profiles of temperature, chemical species concentrations and heat release rate across the flame front. The predicted burning velocities match well the burning velocities measured in various conditions, reported in literature. The influence of initial concentration, pressure and temperature of ethane-air mixtures on maximum flame temperature, heat release rate, flame thickness and peak concentrations of main reaction intermediates is examined and discussed.   相似文献   

7.
We developed a capillary chromatography system by using an open capillary tube made of fused-silica, polyethylene, or polytetrafluoroethylene, and a water-hydrophilic/hydrophobic organic mixture carrier solution, called tube radial distribution chromatography (TRDC) system. By comparing with chromatograms obtained via the TRDC system, fluorescence photographs and profiles of the fluorescent dyes dissolved in the carrier solvents in capillary tubes were observed under laminar flow conditions. The chromatograms were obtained for a model mixture analyte consisting of 1-naphthol and 2,6-naphthalenedisulfonic acid with the TRDC system, by using a fused-silica capillary tube and a water-acetonitrile-ethyl acetate carrier solution. By altering the carrier flow rates, we examined the fluorescence photographs and profiles of the dyes, perylene and Eosin Y, dissolved in the carrier solvents in the capillary tube by using a fluorescence microscope equipped with a CCD camera. As confirmed by fluorescence observations, the major inner and minor outer phases generated in the capillary tube were based on the tube's radial distribution of the carrier solvents. We designed and manufactured a microreactor incorporating microchannels in which three narrow channels combined to form one wide channel. When the carrier solvents containing the dyes were fed into the channels, the inner and outer phase generations were also observed in the narrow and wide channels, strongly supporting the conclusions concerning the tube radial distribution phenomenon of the solvents.  相似文献   

8.
Modeling pyrolysis behavior of waste plastic mixtures is of importance for design and operation of reactors which convert these waste plastics into valuable chemicals. However, because of limited understanding of their degradation behavior even for single component plastic wastes, modeling degradation kinetics of plastic mixtures is a challenging task.In this work, we report modeling of binary and ternary mixture degradation kinetics of polyethylene terephthalate (PET), low density polyethylene (LDPE) and polypropylene (PP). A simple mixing rule approach was used with one cross-kinetic degradation parameter per each binary. Ternary kinetics were completely predictive and showed good agreement with the experimental data.  相似文献   

9.
10.
A new method for measuring gas-phase and aerosol reaction kinetics is described in which the gas flow, itself, acts as a "virtual injector" continuously increasing the contact time in analogy to conventional movable-injector kinetics techniques. In this method a laser is directed down the length of a flow tube, instantly initiating reaction by photodissociation of a precursor species at every point throughout the flow tube. Key tropospheric reactants such as OH, Cl, NO(3), and O(3) can be generated with nearly uniform concentrations along the length of the flow tube in this manner using 355 nm radiation from the third harmonic of a Nd:YAG laser. As the flow travels down the flow tube, both the gas-phase and particle-phase species react with the photogenerated radicals or O(3) for increasingly longer time before exiting and being detected. The advantages of this method are that (1) any wall loss of gas-phase and particle species is automatically accounted for, (2) the reactions are conducted under nearly pseudo-first-order conditions, (3) the progress of the reaction is followed as a continuous function of reaction time instead of reactant concentration, (4) data collection is quick with an entire decay trace being collected in as little as 1 min, (5) relative rates of several species can be measured simultaneously, and (6) bimolecular rate constants at least as small as k = 10(-17) (cm(3)/molecule)/s, or aerosol uptake coefficients at least as small as γ = 10(-4), can be measured. Using the virtual injector technique with an aerosol chemical ionization mass spectrometer (CIMS) as a detector, examples of gas-phase relative rates and uptake by oleic acid particles are given for OH, Cl, NO(3), and O(3) reactions with most agreeing to within 20% of published values, where available.  相似文献   

11.
《Liquid crystals》1998,24(4):563-568
Light scattering has been used to study phase separation kinetics in mixtures containing liquid crystals and epoxy resins. In the samples studied, phase separation was induced by the polymerization of the resins with an appropriate curing agent. Experiments were carried out at different compositions and at different temperatures. The results show that the kinetic mechanism of phase separation is composition dependent. For high liquid crystal content the data are in qualitative agreement with existing theories describing spinodal decomposition; at lower concentrations the mechanism is different. The physical properties of the resulting materials are independent of the decomposition mechanism. The data have also been analysed considering the scaling behaviour expected for late stages of phase separation in polyinduced meric mixtures. Samples obtained in a narrow concentration range, where the two kinetic mechanisms overlap, exhibit peculiar physical properties.  相似文献   

12.
We report preliminary simulations of anisotropic scattering from aggregates of small hard spherical particles embedded in an elastic polymer matrix, using simple geometrical methods. First we build several types of aggregates in three dimensions: crystalline, amorphous compact, fractals, of different numbers of particles and varying polydispersity. We then turn to the spectra of deformed samples simulated in two dimensions. We impose an affine displacement inside the matrix to the fillers, which can be isolated particles or small aggregates, and account for the collisions which arise due to lateral shrinking of the material. The two-dimensional scattering spectra are shown and discussed. They reproduce experimentally observed isointensity curves: ellipses, banana-shaped maxima and splitting of these maxima in four spots. Finally, we explore the consequences of the reduction to two dimensions via statistics of the number of collisions. It is found that even if collisions are more important in 3 dimensions, the behavior is qualitatively similar in two and three dimensions.  相似文献   

13.
We report the properties of eutectic mixtures of triphenylenes displaying a highly ordered columnar phase with a low molar mass non-discotic compound. Such highly ordered triphenylenes display large charge carrier mobilities which are strongly controlled by the state of order in the discotic phase. The motivation was to establish how the state of order—molecular order, phase morphology, temperature ranges of phase stabilities and macroscopic orientational order—can be influenced by mixing. The studies reveal that the molecular order, in particular the mutual arrangement of the columns and the intracolumnar order, are unaffected by dilution of the discotic compound, whereas the phase morphology and the kinetics of phase separation change significantly with dilution. Rod-shaped discotic domains with a hexagonal cross-sectional area are formed via a nucleation process and the rods grow linearly as a function of time. Both the pure discotic phase as well as the discotic domains forming during phase separation can be macroscopically ordered by orientation layers.  相似文献   

14.
We report the properties of eutectic mixtures of triphenylenes displaying a highly ordered columnar phase with a low molar mass non‐discotic compound. Such highly ordered triphenylenes display large charge carrier mobilities which are strongly controlled by the state of order in the discotic phase. The motivation was to establish how the state of order—molecular order, phase morphology, temperature ranges of phase stabilities and macroscopic orientational order—can be influenced by mixing. The studies reveal that the molecular order, in particular the mutual arrangement of the columns and the intracolumnar order, are unaffected by dilution of the discotic compound, whereas the phase morphology and the kinetics of phase separation change significantly with dilution. Rod‐shaped discotic domains with a hexagonal cross‐sectional area are formed via a nucleation process and the rods grow linearly as a function of time. Both the pure discotic phase as well as the discotic domains forming during phase separation can be macroscopically ordered by orientation layers.  相似文献   

15.
For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.  相似文献   

16.
An experimental and computational investigation of the effects of local fluid shear rate on the aggregation and breakage of approximately 10 microm latex spheres suspended in an aqueous solution undergoing laminar Taylor-Couette flow was carried out according to the following program. First, computational fluid dynamics (CFD) simulations were performed and the flow field predictions were validated with data from particle image velocimetry experiments. Subsequently, the quadrature method of moments (QMOM) was implemented into the CFD code to obtain predictions for mean particle size that account for the effects of local shear rate on the aggregation and breakage. These predictions were then compared with experimental data for latex sphere aggregates (using an in situ optical imaging method) and with predictions using spatial average shear rates. The mean particle size evolution predicted by CFD and QMOM using appropriate kinetic expressions that incorporate information concerning the particle morphology (fractal dimension) and the local fluid viscous effects on aggregation collision efficiency match well with the experimental data.  相似文献   

17.
The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite have been studied by differential thermal analysis (DTA). Kaolinite was mechanically activated in a planetary mill, while amorphization in the structure was studied by X-ray diffraction analysis. It was established that the mechanical activation especially affected the loss of structural water. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20 °C min−1. The mechanical activation and amorphization of the kaolinite brings to the formation of mullite at a lower heating temperature.  相似文献   

18.
19.
Consequent to our recent papers on C(60) colloidal aggregates in CS(2) solution (Bokare, A. D.; Patnaik, A. J. Phys. Chem. 2003, 107, 6079-6086) and their probable electron density distribution (Bokare, A. D.; Patnaik, A. J. Chem. Phys. 2003, 119, 4529-4538), the solution-phase structure of C(60) in nonpolar o-xylene is reported using a positronium (Ps) atom as a fundamental probe, mapping changes in the local electron density of the microenvironment. Spontaneous formation of stable aggregates in the colloidal range (approximately 90-150 nm) was observed in a concentration range of 0.14-0.36 g/dm(3), beyond which they broke. An onset concentration for aggregate formation at 0.14 g/dm(3), as against 0.06 g/dm(3) for the polar CS(2) solvent, was noted and was substantiated by complete quenching of pyrene fluorescence at and beyond this onset due to photoinduced electron transfer from the pyrene excited state to the C(60) aggregate. An order-disorder phase transition led to a notable geometry change of the colloidal particles; a sphere-to-nonuniform cylinder transition following an increase in the C(60) concentration from 0.14 to 0.36 g/dm(3) revealed the aggregate curvature/internal modes to have been influenced by energetic/entropic and/or hydrodynamic interactions in the solvent medium. Transmission electron microscopy images of the aggregated clusters, in corroboration with Ps annihilation characteristics and pyrene fluorescence, revealed the clusters to be hexagonally close packed microcrystals.  相似文献   

20.
This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye-Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i). a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii). a reduction in the volumetric flow rate in the case of electroosmosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号