首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The intermetallic PdGa is a highly selective and potent catalyst in the semihydrogenation of acetylene, which is attributed to the surface stability and isolated Pd atom ensembles. In this context PdGa single crystals of form B with (111) orientation were investigated by means of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), X-ray photoelectron diffraction (XPD), and low-energy electron diffraction (LEED) to study the electronic and geometric properties of this surface. UPS and thermal desorption spectroscopy (TDS) were used to probe the chemisorption behavior of CO. The PdGa(111) surface exhibits a (1 × 1) LEED and a pronounced XPD pattern indicating an unreconstructed bulk-truncated surface. Low-temperature STM reveals a smooth surface with a (1 × 1) unit cell. No segregation occurs, and no impurities are detected by XPS. The electronic structure and the CO adsorption properties reveal PdGa(111) to be a bulk-truncated intermetallic compound with Pd-Ga partial covalent bonding.  相似文献   

2.
Ultraviolet photoelectron spectroscopy (UPS), work function measurements, low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) have been used to study the adsorption and desorption of 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C(2)C(1)Im][Tf(2)N], on the (1×2) clean surface reconstruction of Au(110) in the temperature range 100-674 K. The ionic liquid adsorbed without decomposition, and desorbed without leaving any residue on the surface. For adsorption at room temperature a monolayer of strongly bound ionic liquid was formed with four interface states visible in UP spectra. STM at 100 K showed that the monolayer consisted of well-ordered rows of adsorbed ionic liquid aligned parallel to the close packed rows of surface gold atoms (the [110] direction) with a separation of ×2 (the same as the clean surface reconstruction) between the rows in the orthogonal [001] direction. Multilayer adsorption at room temperature occurred by droplet formation followed by smoothing of the droplets to a layered morphology with time. Heating caused multilayer desorption at temperatures in the 363-383 K range, followed by partial monolayer desorption at 548 K to produce a Au(110)-(1×3) reconstructed surface with sub-monolayer domains of ionic liquid. Desorption of the remaining ionic liquid at 600 K caused the gold surface to reconstruct back to the clean (1×2) reconstruction.  相似文献   

3.
The adsorption of benzotriazole--an outstanding corrosion inhibitor for copper--on Cu(111), Cu(100), Cu(110), and low coordinated defects thereon has been studied and characterized using density functional theory (DFT) calculations. We find that benzotriazole can either chemisorb in an upright geometry or physisorb with the molecular plane being nearly parallel to the surface. While the magnitude of chemisorption energy increases as passing from densely packed Cu(111) to more open surfaces and low coordinated defects, the physisorption energy is instead rather similar on all three low Miller index surfaces. It is pointed out that due to a large dipole moment of benzotriazole the dipole-dipole interactions are rather important. For perpendicular chemisorption modes the lateral repulsion is very long ranged, extending up to the nearest-neighbor distance of about 60 bohrs, whereas for parallel adsorption modes the lateral interactions are far less pronounced and the molecules experience a weak attraction at distances ?25 bohrs. The chemisorption energies were therefore extrapolated to zero coverage by a recently developed scheme and the resulting values are -0.60, -0.73, and -0.92 eV for Cu(111), Cu(100), and Cu(110), respectively, whereas the zero-coverage physisorption energy is about -0.7 eV irrespective of the surface plane. While the more densely packed surfaces are not reactive enough to interact with the molecular π-system, the reactivity of Cu(110) appears to be at the onset of such interaction, resulting in a very stable parallel adsorption structure with an adsorption energy of -1.3 eV that is ascribed as an apparent chemisorption+physisorption mode.  相似文献   

4.
The formation and molecular structure of self-assembled monolayers (SAMs) of anthracene-2-thiol (AnT) on Au(111) have been characterized by reflection adsorption infrared spectroscopy, thermal desorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption spectroscopy, scanning tunneling microscopy, and low energy electron diffraction. It is demonstrated that highly ordered monolayer films are formed upon immersion, but their quality depends critically on the choice of solvents and rinsing conditions. The saturated monolayer is characterized by a closed packed arrangement of upright standing molecules forming a (2 x 4)rect unit cell. At about 450 K a partial desorption takes place and the remaining molecules form a dilute (4 x 2)-phase with an almost planar adsorption geometry, while further heating above 520 K causes a thermally induced fragmentation. According to their different densities both phases reveal very diverse chemical reactivities. Whereas the saturated monolayer is stable and inert under ambient conditions, the dilute phase does not warrant any protection of the sulfur headgroups which oxidize rapidly in air.  相似文献   

5.
NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was inves-tigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An unexpected formation of nitrite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is observed, then decompose at elevated tempera-tures to form N2. However, such nitrite/nitrate surface species do not form on clean Pt(110) and Ag-Pt alloy surfaces upon NO exposure at room temperature. The formation of ni-trite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is attributed to highreactivity of highly coordination-unsaturated Ag clusters and the synergetic effect between Ag clusters and Pt substrate.  相似文献   

6.
Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and thermal desorption spectroscopy (TDS) are used to study vacuum vapor-deposited molecular thin films of the rhombus-shaped polycondensed aromatic hydrocarbon "rhombus-C54", C54H22, on MoS2 and graphite (0001) and on GeS (010) substrates. It is found that this compound forms well-ordered incommensurate superstructures of the closest packed flat-lying molecules in well-defined azimuthal orientations to the substrate. These films are thermally remarkably stable. By TDS, a monolayer binding energy on graphite of 2.3 eV was derived, whereas the molecules in the second layer were found to be less strongly bound (1.9 eV). This difference allows the preparation of monolayers by desorbing multilayers at the appropriate temperature. Apparently, this molecule is a promising candidate for further studies aiming at applications in organic electronics such as organic field effect transistors or light emitting displays.  相似文献   

7.
The structural evolution and thermal stability of perfluoro-pentacene (PF-PEN) thin films on Ag(111) have been studied by means of low-temperature scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). Well-defined monolayer films can be prepared by utilizing the different adsorption energy of mono- and multilayer films and selectively desorbing multilayers upon careful heating at 380 K, whereas at temperatures above 400 K, a dissociation occurs. In the first monolayer, the molecules adopt a planar adsorption geometry and form a well-ordered commensurate (6 × 3) superstructure where molecules are uniformly oriented with their long axis along the <110> azimuth. This molecular orientation is also maintained in the second layer, where molecules exhibit a staggered packing motif, whereas further deposition leads to the formation of isolated, tall islands. Moreover, on smooth silver surfaces with extended terraces, growth of PF-PEN onto beforehand prepared long-range ordered monolayer films at elevated temperature leads to needle-like islands that are uniformly aligned at substrate steps along <110> azimuth directions.  相似文献   

8.
The thermal decomposition of dimethyl methylphosphonate (DMMP), which is a simulant molecule for organophosphorus nerve agents, has been investigated on Cu clusters as well as on Cu films deposited on a TiO(2)(110) surface. Scanning tunneling microscopy studies were conducted to characterize the cluster sizes and surface morphologies of the deposited Cu clusters and films. Temperature-programmed desorption experiments demonstrated that the surface chemistry of DMMP is not sensitive to the size of the Cu clusters over the range studied in this work. DMMP reaction on an annealed 40 monolayer Cu film resulted in the desorption of H(2), methane, methyl, formaldehyde, methanol, and molecular DMMP, and reaction on the small (4.4 +/- 0.9 nm diameter, 1.8 +/- 0.6 nm height) and large (10.7 +/- 1.9 nm diameter, 4.8 +/- 1.0 nm height) Cu clusters generated similar products. Formaldehyde and methane production is believed to occur via a methoxy intermediate on the Cu surface. These products are favored on the higher coverage Cu films that completely cover the TiO(2) surface since competing reaction pathways on TiO(2) are suppressed. X-ray photoelectron spectroscopy studies showed that DMMP begins to decompose on the Cu clusters upon adsorption at room temperature and that atomic carbon, atomic phosphorus, and PO(x) remain on the surface after DMMP decomposition.  相似文献   

9.
Size-selected gold clusters, Au(n)(+) (n = 1, 3, 4), were deposited on an ordered Al(2)O(3) film grown on NiAl(110), and changes in morphology and electronic properties with deposition/annealing temperature and cluster size were investigated by X-ray photoelectron spectroscopy (XPS) and ion-scattering spectroscopy (ISS). Extensive agglomeration was observed by ISS for annealing temperatures above 300 K, accompanied by large shifts in the Au XPS binding energy. Agglomeration is more extensive in room-temperature deposition, compared to samples prepared by low-temperature deposition, then annealed to room temperature. Agglomeration is also observed to be dependent on deposited cluster size. CO adsorption was studied by ISS and temperature-programmed desorption, and we looked for CO oxidation under conditions where substantial activity is seen for Au(n)/TiO(2). No activity was observed for Au(n)/Al(2)O(3). The differences between the two systems are interpreted in terms of the nature of the metal-support interactions.  相似文献   

10.
利用X射线光电子能谱和程序升温脱附谱研究了NO在清洁和预吸附氧的Cu(111)表面上的吸附和反应.通过改变NO的暴露量和退火温度,在Cu(111)表面可以制备出不同种类的化学吸附氧物种,其O 1s的结合能分别位于531.0 eV (O531)和529.7 eV (O529).表面O531物种的存在对NO的不同吸附状态有着显著影响,同时使得大部分NO吸附分子(NO(a))在加热过程中发生分解并以N2O和N2形式脱附; 而表面O529物种对NO(a)的解离脱附有着明显的抑制作用.相对于O531物种来说,O529物种对NO吸附表现出更强的位阻效应.上述结果表明,NO在Cu(111) 表面的吸附和分解行为与预吸附氧物种的种类和覆盖度密切相关.  相似文献   

11.
The adsorption, desorption, and growth kinetics as well as the thin film morphology and crystal structure of p-quaterphenyl (4P) grown under ultrahigh vacuum conditions on single crystalline Au(111) have been investigated. Thermal desorption spectroscopy (TDS) reveals two distinct first-order peaks attributed to monolayer desorption followed by a zero-order multilayer desorption. The saturation coverage of the full 4P monolayer has been quantitatively measured with a quartz microbalance to be 8 x 10(13) molecules/cm2. Using low energy electron diffraction the structures of the 0.5 and 1 ML (monolayer) adsorbates have been studied, showing highly regular arrangements of the 4P molecules, which are affected by the (111) surface structure. At the transition from 0.5 to 1 ML a structural compression of the overlayer has been observed. The behavior of thicker 4P films has been investigated by combined TDS-XPS (XPS-x-ray photoelectron spectroscopy). A temperature-induced recrystallization process at about 270 K has been observed for a 7 nm thick 4P film grown at 93 K, corresponding to a transition from a disordered layerlike growth to a crystalline island growth. Ex situ optical microscopy and atomic-force microscopy investigations have revealed needle-shaped 4P islands. Applying x-ray diffraction the crystalline order and epitaxial relationship of the 4P films with 30 nm and 200 nm mean thicknesses have been determined.  相似文献   

12.
Carbonaceous films with microcolumnar layer have been prepared by radio-frequency sputtering of polysaccharides pectin. The repeated sputtering has developed the densely packed seamless microcolumns, which are separated by the narrow grooves. The residual film stress has formed the honeycomb-patterned ridges. X-ray photoelectron spectroscopy and energy dispersion spectroscopy revealed the inclusion of nitrogen in the film constituents. The film surface is hydrophilic mainly due to the polar functional groups, such as the carboxyl and amino groups. Nitrogen adsorption measurement revealed that the specific surface area of the film was no less than 109 m2/g. Impedance analysis of the film-coated quartz crystal resonator clarified that the film had the higher adsorption capacities to the polar and cohesive vapors, such as ethyl alcohol. The adsorption of organic vapors has not induced the viscoelastic changes in the film.  相似文献   

13.
 利用程序升温反应谱、X射线光电子能谱和高分辨电子能量损失谱研究了NO在清洁和预吸附氧的Pt(110)表面的吸附和分解. 在清洁的Pt(110)表面,室温下低覆盖度时NO以桥式吸附为主,高覆盖度时NO以线式吸附为主. 加热过程中部分NO(主要是桥式吸附物种)分解,生成N2和N2O. 室温下O2在Pt(110)表面发生解离吸附. Pt(110)表面预吸附氧会抑制桥式吸附NO的生成,并导致其脱附温度降低40 K. 降低脱附温度有利于桥式吸附NO的分子脱附,从而抑制分解反应. 这些结果从表面化学的角度合理地解释了铂催化剂在富氧条件下对NO分解能力的降低.  相似文献   

14.
Carbon nanosheets are a unique nanostructure that, at their thinnest configuration, approach a single freestanding graphene sheet. Temperature desorption spectroscopy (TDS) has shown that the hydrogen adsorption and incorporation during growth of the nanosheets by radio frequency plasma-enhanced chemical vapor deposition are significant. A numerical peak fitting to the desorption spectra (300-1273 K) via the Polanyi-Wigner equation showed that desorption followed a second order process, presumably by the Langmuir-Hinshelwood mechanism. Six peaks provide the best fit to the TDS spectra. Surface desorption activation energies were determined to be 0.59, 0.63, and 0.65 eV for the external graphite surface layers and 0.85, 1.15, and 1.73 eV for desorption and diffusion from the bulk. In contrast to TDS data from previously studied a-C:H films [Schenk et al. J. Appl. Phys. 77, 2462 (1995)], a greater amount of hydrogen bound as sp(2) hybridized carbon was observed. A previous x-ray diffraction study of these films has shown a significant graphitic character with a crystallite dimension of L(a)=10.7 nm. This result is consistent with experimental results by Raman spectroscopy that show as-grown carbon nanosheets to be crystalline as commercial graphite with a crystallite size of L(a)=11 nm. Following TDS, Raman data indicate that the average crystallite increased in size to L(a)=15 nm.  相似文献   

15.
Aromatic sulfur compounds, e.g. thiophene (T), benzothiophene (BT), dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) are present in petroleum and fossil fuels, and cause air pollution, degradation of catalytic converters, deactivation of fuel-reforming catalysts. In this paper, we report kinetic, thermodynamic, spectroscopic and computational studies of adsorption of T, BT, DBT, and 4,6-DMDBT from solution in n-alkane on metal–organic framework (MOF) Basolite C300 at 25–115 °C. The novel temperature-programmed adsorption/desorption method allows the in situ measurement of an adsorption capacity at the variable temperature, and after the cycle “adsorption/desorption”. Adsorption of BT, DBT and 4,6-DMDBT at 25 °C occurs via the formation of the stoichiometric 1:1 adsorption complexes. BT adsorbs reversibly, while 4,6-DMDBT adsorbs irreversibly. The formation of the adsorption complex of the aromatic sulfur compound with MOF is confirmed by the fluorescence spectroscopy for the first time. The DFT computations of the geometry and energy of dispersive versus electronic interactions of T and DBT with the structural units of the C300 MOF are reported for the first time. The mechanism of adsorption is proposed as a combination of dispersive and electronic interactions of the aromatic sulfur compounds with BTC linker and Cu(II) CUS of C300 MOF.  相似文献   

16.
The adsorption of N(2)O on Cu(100) has been studied by using scanning tunneling microscopy (STM). In the first molecular layer N(2)O forms a densely packed c(3 x 2) structure, in which the molecules occupy two different adsorption sites. The bonding strength of this layer is found to be very weak as revealed by a low desorption temperature and the formation of misalignments and defects. Density functional theory (DFT) finds a stable c(3 x 2) structure in which the molecules are considerably bent due to charge transfer. In model calculations for a 2 x 2 hollow phase we show that in order to reach the chemisorbed, bent configuration, the molecules have to pass an activation barrier. In the experimentally accessible range, this is apparently not possible and the molecules remain in a stable physisorbed state.  相似文献   

17.
Self-assembled monolayers (SAMs) of 10-undecene-1-thiol on Au were functionalized with nitrogen-containing groups using an approach in which multilayer ammonia (NH(3)) films were deposited at low temperature onto the SAMs and subsequently exposed to 15 eV electrons. The result of this process was investigated after removal of the remaining NH(3) by annealing to room temperature using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). HREELS shows that the CC double bonds disappear during electron exposure, while XPS gives evidence that about 25% of the terminal double bonds of the SAM were functionalized. Also, XPS shows that a sufficiently thick NH(3) layer protects the underlying SAM from electron-induced damage. The process suggested here thus represents a particularly gentle approach to the functionalization of ultrathin molecular layers. Thermal desorption spectrometry (TDS) and electron-stimulated desorption (ESD) experiments on condensed layers of NH(3) reveal production of N(2) but show that significant amounts of the initial NH(3) as well as N(2) produced during electron exposure desorb. Hydrogen released upon formation of N(2) is held responsible for the reduction of double bonds and protection of the SAMs from damage.  相似文献   

18.
Auger electron spectroscopy (AES), thermal-desorption spectroscopy (TDS), and, in particular, molecular-beam scattering techniques have been combined to address particle size effects in the adsorption of CO on Cu-on-ZnO(0001). AES and TDS lead to a Cu coverage, theta(Cu), calibration. The TDS curves, as a function of theta(Cu) and CO exposure, revealed three structures at 150, 220, and 260-280 K, in agreement with prior studies. However, a unique assignment of the TDS structures to a particular Cu face was not possible. An enhancement of the initial adsorption probability, S0, with respect to the support indicates the effect of the Cu nanoparticles. Despite that the shape of S0 versus impact energy curves was independent of theta(Cu) and agreed with Cu single-crystal reference systems, distinct particle size effects were present with regard to the adsorption mechanism. It was possible to observe a crossover from Langmuir-type adsorption dynamics to more precursor-assisted adsorption dynamics with increasing theta(Cu). Thus, a dynamic structure-activity relationship was evident, i.e., the energy-transfer mechanism depends on the Cu morphology.  相似文献   

19.
The adsorption of CO on a polycrystalline Mo film at ~80°K has been studied by X-ray and UV photoelectron spectroscopy (XPS and UPS). Two adsorption states were revealed by XPS, the ratio of the O(1s) intensities from these two states was about 4 : 1 at saturation coverage (PCO ~ 10?6 torr). Broad resonances corresponding to the MO's of CO(ads) are observed in the UPS spectrum. On warming to room temperature chemical shifts of about 1.2 and 1.9 eV to lower binding energies were observed for the O(1s) and C(1s) signals of the major CO(ads) component. The minor state desorbed as anticipated from previous adsorption studies. The XPS spectrum observed at room temperature was virtually identical to that previously reported for CO adsorbed at room temperature. On warming the ‘orbital’ of adsorbed CO revealed by UPS is replaced by a structure apparently characteristic of carbon and oxygen atoms. These results suggest that low temperature adsorption takes place predominantly into a molecular state which on warming to room temperature dissociates.  相似文献   

20.
Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N2 adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号