首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this work, the evolution of the morphology of polypropylene/polystyrene/poly(methyl metacrylate) (PP/PS/PMMA) blends to which graft copolymers polypropylene-graft-polystyrene (PP-g-PS) of 2 compositions (55/45 and 70/30), polypropylene-graft-poly(methyl metacrylate) (PP-g-PMMA), or styrene-block-(ethylene- co-butadiene)-block-styrene (SEBS) was added has been studied. The ternary blends morphologies were predicted using phenomenological models that predict the morphology of ternary blends as a function of the interfacial tension between the blend components (spreading coefficient and free energy minimization). All blends studied presented a core-shell morphology with PS as shell and PMMA as core. The addition of PP-g-PS or SEBS resulted in a reduction of the size of the PS shell phase and, the addition of PP-g-PMMA did not seem to have any effect on the diameter of PMMA. The difference observed between the different morphologies relied on the number of droplets of core within the shell. All the phenomenological models predictions corroborated the experimental results, except when PP-g-PMMA was added to the blend.  相似文献   

2.
The polypropylene-graft-polyisoprene (PP-g-PIP) copolymers with different side chain length were synthesized by the combination of solid phase graft and anionic polymerization. The copolymers were characterized by nuclear magnetic resonance spectrum (1H-NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Five PP/PP-g-PIP blends with PP-g-PIP as a flexibilizer to toughen PP were prepared and characterized by scanning electron microscope (SEM), dynamic mechanical analysis (DMA), DSC, wide-angle X-ray diffraction (WAXD). Their morphologies, glass transition temperatures, crystallinity and mechanical properties were investigated. All the results pointed out that the covalent bonding of PP and PIP increased the compatibility and interfacial adhesion, which led to PIP well dispersed in the system and small size PIP particles in the binary blends. In addition, the toughness of PP was improved while its tensile strength slightly decreased.  相似文献   

3.
唐涛 《高分子科学》2014,32(3):333-349
Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene(PP-g-PS) and polypropylene-gpoly(n-butyl acrylate)(PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC.The Avrami equation was used to analyze the isothermal crystallization process,while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model.The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers:on one hand,the interaction between branches(π-π interaction between PS branches,or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones,which hindered the crystallization process;on the other hand,the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism(caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length,which facilitated the crystallization process.  相似文献   

4.
Inorganic nanoparticles are widely used to improve space charge behavior, DC breakdown strength and other electrical properties of polymer insulating materials, but the uniform distribution of inorganic nanofillers in matrix is difficult due to their agglomeration and bad compatibility with the polymeric matrix. In this paper, polypropylene (PP)/polystyrene (PS) blends were prepared to suppress space charge accumulation and improve DC breakdown strength. Polypropylene-g-polystyrene (PP-g-PS) graft copolymer was used as compatibilizer to improve the compatibility of PP matrix and PS filler. The evolution of microstructure of PP/PS blends were investigated by scanning electron microscope (SEM), the space charge distributions were measured by a pulsed electro-acoustic (PEA) system, and DC breakdown strength was also tested. The morphologies show that the size of PS particles reduced to 310 nm when the content of PP-g-PS graft copolymer increased to 24 wt%, and the interaction between PP matrix and PS particles enhanced. The presence of PS particles in all PP/PS blends suppressed the space charge accumulation compared to neat PP, but the DC breakdown strength in uncompatibilized blend was lower than neat PP. The increasing of content of PP-g-PS improved the DC breakdown strength with the maximum value of 408.9 kV/mm was obtained. This may attribute to excellent interface structure formed between PP matrix and PS particles.  相似文献   

5.
A series of polypropylene (PP)/polystyrene (PS) blends were prepared by solvent blending with PS‐grafted PP copolymers (PP‐g‐PS) having different PS graft chain length as compatibilizers. The interfacial compatibility was significantly improved with increasing PS graft chain length until the interface was saturated at PS graft chain length being 3.29 × 103 g/mol. The blends were foamed by using pressure‐quenching process and supercritical CO2 as the blowing agent. The cell preferentially formed at compatibilized interface because of low energy barrier for nucleation. Combining with the increased interfacial area, the compatibilized interface lead to the foams with increased cell density compared to the uncompatibilized one. The increase in interfacial compatibility also decreased the escape of gas, held more gas for cell growth, and facilitated the increase in expansion ratio of PP/PS blend foams. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1641–1651, 2008  相似文献   

6.
In this study,the maleic anhydride(MAH)and styrene(St)dual monomers grafted polypropylene(PP)and poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS),i.e.PP-g-(MAH-co-St)and SEBS-g-(MAH-co-St)are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS(70/10/10/10)model quaternary blends.Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St)in the dispersed domains(about 2μm)of the PA6/PS/PP-g-(MAH-co-St)/SEBS(70/10/10/10)quaternary blend.In contrast,inside the dispersed domains(about 1μm)of the PA6/PS/PP/SEBS-g-(MAH-co-St)(70/10/10/10)quaternary blend,the soft SEBS-g-(MAH-co-St)encapsulates both the hard PS and PP phases and separates them.With increasing the content of the compatibilizers equally,the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St))(70/10/10/10)quaternary blends evolves from the soft(SEBS+SEBS-g-(MAH-co-St))encapsulating PS and partially encapsulating PP(about 1μm),then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St)and then separated by PP-g-(MAH-co-St)inside the smaller domains(about 0.6μm).This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers.The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain,which results in the further improved mechanical properties.Compared to the uncompatibilized blend,the blend with both 10 wt%PP-g-(MAH-co-St)and 10 wt%SEBS-g-(MAH-co-St)has the best mechanical properties with the stress at break,strain at break and impact failure energy improved significantly by 97%,71%and 261%,respectively.There is a strong correlation between the structure and property in the blends.  相似文献   

7.
Microscopic, mechanical, rheological and thermal tests were carried out in order to determine the recycling behaviour of PP/vegetal fibre composites. Different composites using hemp and sisal were characterized. All results were compared with PP-g-MA/hemp composites and PP/glass fibre composites.The results prove that mechanical properties are well conserved with the reprocessing of PP/vegetal fibre composites but that there is poor adhesion between the fibres and PP without any treatment. The addition of PP-g-MA shows an improvement of the bonding evidenced by MEB pictures. Vegetal fibres induce an increase in the percentage of crystallinity χc and in the crystallization temperature Tc which can be explained by the nucleating ability of the fibres improving crystallization of PP. The Newtonian viscosity η0 decreases with cycles, indicating a decrease in molecular weight and chain scissions induced by reprocessing. The decrease of fibre length with reprocessing could be another reason for viscosity decrease.  相似文献   

8.
 The Vickers microhardness of blends of isotactic polypropylene and a semiflexible liquid-crystalline polymer (iPP/LCP 90/10 and 80/20 w/w), compatibilized with 2.5, 5 or 10 wt% PP-g-LCP copolymers with different composition has been studied. It has been shown that the microhardness values of uncompatibilized blends are close to the additive ones, while for compatibilized blends a strong positive deviation from additivity has been established. This result is interpreted by the increase in the degree of crystallinity of PP, by the decrease in the surface free energy of PP crystals and by the decrease in the surface free energy of the LC domains when the PP-g-LCP compatibilizer is present. The effect of the composition and concentration of the compatibilizer on the experimental hardness values has also been studied. The values of the microhardness/modulus of elasticity of some of the materials have been obtained. It is demonstrated that according to these values the compatibilized blends take a position closer to the elastic material in the elastic–plastic spectrum than the uncompatibilized blends. The results are interpreted by the compatibilizing efficiency of PP-g-LCP copolymers towards iPP/LCP blends. Received: 18 June 2001 Accepted: 4 October 2001  相似文献   

9.
电子显微镜观察表明,以乙丙橡胶(EPR)为主干,聚苯乙烯(PS)为支链的接枝共聚物EPR-g-PS的基本形态是高度分散的聚苯乙烯微区(约几百?)存在于乙丙橡胶连续相中的两相体系,随接枝共聚物中聚苯乙烯含量增加,微区形态发生变化,少量的接枝共聚物在PS与EPR共混物中起“增容剂”作用,使分散相微区变得小而均匀,多重玻璃化转变的存在进一步证实了接枝共聚物相分离的形态结构。  相似文献   

10.
The copolymerization of propylene with allyldimethylsilane (ADMS) was carried out with conventional Ziegler-Natta catalyst supported on MgCl2. The effects of the concentration of ADMS in the feed on the polymerization reaction and copolymer properties were investigated. The resulting copolymer PP-co-ADMS was chlorinated to PP-Si-Cl by refluxing the copolymer with SOCl2 in benzene. The chlorinated copolymer was used to initiate ATRP of MMA with CuCl/PMDETA as catalyst to produce graft copolymer PP-g-PMMA, which was characterized with 1H NMR, 13C NMR, GPC and DSC. Polymer blend of iPP/PP-g-PMMA/PMMA was prepared and the results shown that PP-g-PMMA was an effective compatilizer.  相似文献   

11.
A novel grafted copolymer with two different types of side chains was synthesized via a combination of grafting-onto and grafting-from strategy. Graft copolymer with one side chains polybutadiene-graft-polystyrene (PB-g-PS) was first synthesized though the grafting-onto method. Following the subsequent grafting-from method, the second kind of side chain was introduced to the copolymer with anionic ring open polymerization of ethylene oxide, obtaining dual-grafted copolymer polybutadiene-graft-(polystyrene; poly(ethylene oxide)) (PB-g-(PS;PEO)). By this combined strategy, linear and star-shaped dual-grafted copolymer were synthesized. The resulting dual-grafted copolymers had controlled molecular weights and narrow molecular weight distributions (Mw/Mn < 1.20). The thermal behavior of this dual-grafted copolymer bearing glassy and crystalline side chains was determined by differential scanning calorimetry (DSC), revealing that poly(ethylene oxide) grafts underwent confined crystallization, and the star-shaped copolymer had more confinement effects than did the linear ones.  相似文献   

12.
The study involves synthesis of polypropylene grafted with glycidyl methacrylate (PP-g-GMA) using three different initiators, benzoyl peroxide, dicumyl peroxide and tertiary butyl cumyl peroxide (TBSP). Among the peroxides used, dicumyl peroxide resulted in considerable reduction of molecular weight of the resulting graft copolymer. The melting/crystallization behavior and isothermal crystallization kinetics of PP homopolymer and PP-g-GMA copolymers were studied with differential scanning calorimetry (DSC) at high undercooling (44–60°C). The results showed that the degree of crystallinity and overall crystallization rate of copolymers is greater than that of virgin PP. Among the three initiators used, TBCP exhibited lowest half crystallization time. The isothermal crystallization kinetics of the PP and copolymers was described with the Avrami equation and Sestak-Berggren (SB) equation. The Avrami exponent n of the PP and copolymers were found to be in the range 1.03 to 1.41 at high undercooling conditions employed in this study. The agreement between the values of n calculated from SB kinetics and Avrami equation is satisfactory with few exceptions. The crystallization rate of PP-g-GMA copolymer was found to be more sensitive to temperature. The isothermally crystallized samples showed a single melting peak for PP while a double peak at lower temperature was recorded for PP-g-GMA copolymer samples. The equilibrium melting point was deduced according to Hoffman-Weeks theory. The decrease of recorded for the PP modified with GMA suggests that the thermodynamic stability of the PP crystals is influenced by the chemical interactions.  相似文献   

13.
To study the efficiency of different mechanisms for reactive compatibilization of polypropylene/polystyrene blends (PP/PS blends), main chain or terminal-functionalized PP and terminal-functionalized PS have been synthesized by different methods. While the in-situ block and graft copolymer formation results in finer phase morphologies compared to the corresponding non-reactive blends, the morphology development in the ternary blend system PP/PS + HBP (hyperbranched polymer) is a very complex process. HBP with carboxylic acid end groups reacts preferably with the reactive sites of the oxazoline functionalized PS (PS-Ox) and locates mainly within the dispersed PS-Ox phase. A bimodal size distribution of the PS-Ox particles within the oxazoline modified PP (PP-Ox) matrix phase is observed with big PS-Ox particles (containing the HBP as dispersed phase) and small PS-Ox particles similar in size to the unimodal distributed particles in the non-reactive PP-Ox/PS-Ox blends. Factors influencing the morphology are discussed.  相似文献   

14.
The application of Friedel‐Crafts alkylation reaction to the compatibilization of polypropylene (PP)/polystyrene (PS) blends was assessed. A PP macrocarbocation is chemically bonded to the PS benzene ring by aromatic electrophilic substitution. The graft copolymer formed at the interphase (PP‐g‐PS) showed relatively high emulsification strength, suggesting an effective behavior as in situ compatibilizer. The critical micelle concentration (CMC) was related to Friedel‐Crafts catalyst concentration. The amount of PS grafting and possible appearance of crosslinking and chain scission side reactions were also analyzed. The reaction products were characterized by a combination of size exclusion chromatography and Fourier transform infrared techniques applied after a careful solvent extraction separation. It was found, from the emulsification curve, that CMC was achieved when 0.7 wt % AlCl3 was added. This value was confirmed by scanning electron microscopy observation of phase adhesion on fractured sample surfaces. Mass balances of extracted PS showed that at least 15 wt % of the initial PS resulted grafted at the CMC condition. Chain scission reactions, in parallel with grafting, were verified to occur for PP as well as for PS. Instead, crosslinking reactions were not detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 452–462, 2004  相似文献   

15.
The non-isothermal crystallization kinetics of three functionalized polypropylenes (PPs; polypropylenes-g-acrylic acid [PP-g-AA], polypropylenes-g-glycidyl methacrylate [PP-g-GMA], polypropylenes-g-maleic anhydride [PP-g-MAH]) at different cooling rates were investigated by differential scanning calorimetry, using the Jeziorny method, Ozawa method, and Mo method. The result showed that Mo method can adequately describe the non-isothermal crystallization kinetics of pure PP and functionalized PPs, and at a given relative crystallinity, the crystallization rate obtained using Mo method followed an order of PP-g-AA > PP-g-GMA > PP > PP-g-MAH. The crystallization activation energy for these samples was calculated using Kissinger's method, which indicated that the introduction of monomers had a confinement effect on the motion of PP chains.  相似文献   

16.
The melt radical grafting of glycidyl methacrylate (GMA) onto isotactic polypropylene (PP) was carried out in Brabender internal mixer and the influence of reaction procedure, radical initiator concentration and addition of co-monomer (styrene) on the grafting efficiency was examined. The viscosity, the thermal behaviour and melt rheology of PP-g-GMA samples was then analysed as a function of grafted GMA content. Blends of poly(ethylene terephthalate) (PET) with PP and PP-g-GMA (5.2 wt% GMA), prepared in internal mixer, were characterised by SEM, DSC and melt viscosimetry. The morphological analysis of PET/PP-g-GMA blends (80/20, 50/50 w/w) pointed out a marked improvement of phase dispersion (with particle size of about 0.6 μm for 80/20 blend) and interfacial adhesion, as compared to non-compatibilized PET/PP blend. The results of mixing torque and thermal analysis supported the occurrence of in-situ compatibilization reaction between epoxy groups of GMA modified PP and carboxyl end-groups of PET in the melt.  相似文献   

17.
朱长进 《高分子科学》2014,32(2):151-162
A novel series of polyphosphazene-grafl-polystyrene (PP-g-PS) copolymers were successfully prepared by atom transfer radical polymerization (ATRP) of styrene monomers and brominated poly(bis(4-methylphenoxy)phosphazene) macroinitiator. The graft density and the graft length could be regulated by changing the bromination degree of the macroinitiator and the ATRP reaction time, respectively. The PP-g-PS copolymers readily underwent a regioselective sulfonation reaction, which occurred preferentially at the polystyrene sites, producing the sulfonated PP-g-PS copolymers with a range of ion exchange capacities. The resulting sulfonated PP-g-PS membranes prepared by solution casting showed high water uptake, low water swelling and considerable proton conductivity. They also exhibited good oxidative stability and high resistance to methanol crossover. Morphological studies of the membranes by transmission electron microscopy showed clear nanophase-separated structures resulted from hydrophobic polyphosphazene backbone and hydrophilic polystyrene sulfonic acid segments, indicating the formation of proton transferring tunnels. Therefore, these sulfonated copolymers may be candidate materials for proton exchange membranes in direct methanol fuel cell (DMFC) applications.  相似文献   

18.
Thermal degradation characteristic of polyphenylenes is an important issue for developing a rational technology of polymer processing and applications. In this study, we discussed thermal degradation of polyphenylenes (PP) with poly(-caprolactone) (PCL) and/or PCL/polystyrene copolymers (PSt) prepared by combined controlled polymerization and cross-coupling processes via direct pyrolysis mass spectrometry. When PP-graft-PCL/PSt copolymers were considered, thermally less stabile PCL side chains decomposed in the first step. In the second stage of pyrolysis, the decomposition of the polystyrene chains has taken place. A slight increase in thermal stability of PCL chains for PP-graft-PCL/PSt copolymers was noted compared to copolymer PP-graft-PCL due to the interaction between PSt and PCL chains. This interaction was stronger when PSt chains were linked to the 2-position of the 1,4-phenylene ring.  相似文献   

19.
Graft copolymers with ethylene-propylene (EPR) backbone and polystyrene (PS) grafts, EPR-g-PS, were prepared by terpolymerization of a PS macromer with ethylene and propylene using a vanadium catalyst, with graft efficiency of up to 80% and PS content in the copolymer 5–45%. Such polymerization parameters as molecular weight and dosage of the macromer, catalyst concentration, and reaction temperature which affect the mobility and hence polymerizability of the macromer may have a marked influence on the polymerization and the structure of the products. The molecular architecture of the copolymers was characterized by osmometry, UV, NMR, and GPC methods. TEM and torsional pendulum studies revealed that EPR-g-PS possessed a phase separation morphology with PS domains evenly dispersed in the EPR matrix. The PS content and average number of grafts strongly influence the tensile properties of the copolymers. EPR-g-PS graft copolymers prepared by macromer copolymerization exhibit the mechanical properties of a typical thermoplastic elastomer having two or more branches of a certain length.  相似文献   

20.
《先进技术聚合物》2018,29(8):2344-2351
The recycled polypropylene/recycled high‐impact polystyrene (R‐PP/R‐HIPS) blends were melt extruded by twin‐screw extruder and produced by injection molding machine. The effects of polystyrene‐b‐poly(ethylene/propylene)‐b‐polystyrene copolymer (SEPS) used as compatibilizer on the mechanical properties, morphology, melt flow index, equilibrium torque, and glass transition temperature (Tg) of the blends were investigated. It was found that the notch impact strength and the elongation at break of the R‐PP/R‐HIPS blends with the addition of 10 wt% SEPS were 6.46 kJ/m2 and 31.96%, which were significantly improved by 162.46% and 57.06%, respectively, than that of the uncompatibilized blends. Moreover, the addition of SEPS had a negligible effect on the tensile strength of the R‐PP/R‐HIPS blends. Additionally, the morphology of the blends demonstrated improved distribution and decreased size of the dispersed R‐HIPS phase with increasing the SEPS content. The increase of the melt flow index and the equilibrium torque indicated that the viscosity of the blends increased when the SEPS was incorporated into the R‐PP/R‐HIPS blends. The dynamic mechanical properties test showed that when the content of SEPS was 10 wt%, the difference of Tg decreased from 91.72°C to 81.51°C. The results obtained by differential scanning calorimetry were similar to those measured by dynamic mechanical properties, indicating an improved compatibility of the blends with the addition of SEPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号