首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the monomer concentration were investigated on the preparation of diethylene glycol dimethacrylate (2G) microspheres by radiation-induced polymerization. The monomer concentration strongly affected the conversion and the shape of the microspheres. The particles were obtained in the range from 2 to 24 vol % of 2G monomer. The effective concentration for the preparation of monodisperse microspheres is around 10 vol %. Higher monomer concentrations up to 24 vol % gave rough surface particles. Considering the effects on the number of microspheres in the solution, the authors introduced the inhibiting region, where one microsphere disturbs the existence of another microsphere, and tried to explain the mechanism of the microsphere growth. The competition between the propagation and the crosslinking reactions is balanced to give the microspheres.  相似文献   

2.
The formation of monodisperse, crosslinked, thermally inscribed core‐shell microspheres by free radical precipitation copolymerization of chloromethylstyrene and divinylbenzene in acetonitrile is reported. The radial density profiles of these microspheres match the thermal profiles used during copolymerization: stepping down the polymerization temperature from 75 °C to 65 °C several hours into the copolymerization led to core‐shell microspheres with porous cores and denser shells, while stepping up the polymerization temperature from 68 °C to 78 °C during the polymerization led to formation of microspheres with denser cores and more swellable shells. Microsphere size distributions and internal morphologies were studied using optical and transmission electron microscopy. The change in network swellability with temperature was compared with model studies of aggregation of corresponding nanogels, both in acetonitrile and in related solvent systems, as a function of temperature, indicating the theta‐temperature for this copolymer/solvent system to be around 30 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1159–1166  相似文献   

3.
Ferrocyanide-imprinted pyridine-carrying microspheres were prepared using ferrocyanide ions as a template.This method is based on a surface imprinting technique from the seed emulsion that consisted of 4-vinylpyridine (functional monomer), styrene, and butyl acrylate and a water mixture polymerization by a radical initiator. The ferrocyanide-imprinted microspheres had about 200 times higher adsorption affinity over the non-imprinted microspheres in ferrocyanide (template) ion adsorption. This imprinted microspheres also adsorbed other tripolyphosphate, pyrophosphate, and phosphate anions much more strongly than the non-imprinted microspheres did, but were not particularly specific in ferrocyanide ion adsorption.  相似文献   

4.
Molecularly imprinted polymers bearing atrazine transforming activity were prepared by using newly designed templates that are atrazine analogues attached with an allyl or a styryl group via a disulfide bond at the 6-position, methacrylic acid as a functional monomer and styrene/divinylbenzene as crosslinkers. After polymerization, the disulfide bond was reduced to remove the atrazine moiety from the polymer matrix, followed by oxidation of the remaining thiol group to generate sulfonic acid (post-imprinting treatment), so that both a methacrylic acid residue and a sulfonic acid residue existed in an atrazine-imprinted cavity. The polymers indicated the selective binding of triazine herbicides and catalytic activity for methanolysis at the 6-position of atrazine, yielding a low toxic atraton.  相似文献   

5.
以猪血清白蛋白(PSA)为模板,采用分级印迹方法,制备了新型单分散多孔蛋白质表面印迹微球.将PSA吸附在5gm粒径、1000A孔径的球形硅胶表面及孔内后,将甲基丙烯酰胺、甲基丙烯酸为功能单体、甲又双丙烯酰胺为交联剂的聚合物溶液,通过真空负压引入到硅胶孔内,并在室温下聚合24h.反应完成后,用3mol/L NH4HF2刻蚀硅胶,获得形状和结构与硅胶颗粒互补的PSA印迹聚合物微球.竞争吸附实验结果表明,在非模板蛋白质存在的情况下,实现印迹颗粒对模板蛋白的高选择性吸附,选择因子达到3.6,说明该印迹聚合物材料有望成为一种可以同生物抗体相媲美的新型亲和材料.  相似文献   

6.
对近年来国内外金离子印迹聚合物的合成和应用进展进行了综述,介绍了其制备原理、制备方法及其在金离子的富集和回收、固相萃取等领域中的应用。在此基础上,对金离子印迹技术目前存在的问题和未来的发展方向进行了分析和展望。作为分子印迹技术的一个重要发展方向,金属离子印迹技术的发展具有重要的学术和应用价值。  相似文献   

7.
Spatiotemporal emergence of lamellar branching morphology of polymer spherulite has been investigated theoretically in the framework of a phase field model by coupling a crystal solidification potential pertaining to a nonconserved crystal order parameter with a temperature field generated by latent heat of crystallization. A local free-energy density having an asymmetric double well has been utilized to account for a first-order phase transition such as crystallization. To account for the polymorphous nature of polymer crystallization, the phase field order parameter of crystal at the solidification potential of the double-well local free-energy density is modified to be supercooling dependent. The heat conduction equation, incorporating liberation of latent heat along the nonuniform solid-liquid interface, has led to directional growth of various hierarchical structures including lamella, sheaflike structure, and spherulite. Two-dimensional calculations have been carried out based on experimentally accessible material parameters and experimental conditions for the growth of syndiotactic polypropylene spherulite. The simulations illustrate that, under self-generated thermal field, the initial nucleus is anisotropic having lamellar stacks that transforms to a sheaflike structure and eventually to a lamellar branching morphology with a dual-eye-pocket texture at the core. It appears that the released latent heat is responsible for the lamellar side branching and splaying from the main lamellae. On the same token, the heat build-up seemingly prevents the interface boundaries of neighboring spherulites from over running on each other during impingement, thereby forming the grain boundary.  相似文献   

8.
Biodegradable microspheres were fabricated by poly(?-caprolactone) (PCL) homopolymer and poly(?-caprolactone-b-ethylene oxide) (PCL-b-PEO) amphiphilic block copolymer. The regulation of microsphere surface morphology was successfully achieved by controlled enzymatic degradation. The morphological changes induced by biodegradation and their influences on the growth of MG-63 human osteosarcoma cells were studied. Results based on the evaluation of cytotoxicity and the morphological observation of MG-63 cells cultivated on microspheres showed better growth of cells on the surface of degraded microspheres than on the surface of those undegraded microspheres no matter they were fabricated by homopolymers or copolymers. The influences of morphological changes of microsphere surface before and after biodegradation on MG-63 cell growth were discussed. The results of this work indicated that the biodegradation-induced morphological changes of microspheres could be well controlled and were favorable for MG-63 cell attachment and proliferation.  相似文献   

9.
An enatioselective surface-imprinted polymer for an amino acid derivative (N-benzyloxycarbonyl-glutamic acid, Z-Glu) was prepared using the bifunctional molecule, benzyldimethyl-n-tetradecylammonium chloride (Zeph). The long-chain quaternary ammonium chloride was found to serve the dual function of an emulsifier and host molecule, while conventional functional molecules possess only the latter function. Chiral recognition ability and ligand specificity of the imprinted polymer were demonstrated by several batchwise tests using different four amino acid derivatives. The surface-imprinted polymer could recognize the chirality of N-protected glutamic acid; therefore, it preferentially adsorbed the corresponding enantiomer that was imprinted in the preparation. The pH and buffer concentration in the aqueous solution are the key factors enhancing enantioselectivity. The molecularly imprinted polymer could distinguish the specific structure from other molecular analogues, even though the structural difference was the only methylene group. The high interfacial activity of the functional molecule and the low swelling property of the imprinted polymer were important in ensuring high imprinting effect. The mechanism of chiral recognition on the polymer was also discussed.  相似文献   

10.
Atomic force microscopy (AFM) was employed to probe the mechanical properties of surface-charged polystyrene microspheres with 1-12 mol% of vinylbenzyl(trimethyl)ammonium chloride (VBTA) units. On the basis of Hertz's theory of contact mechanics, compressive moduli between 1 and 2 GPa were measured by the analysis of force-displacement curves captured on the particles via the force-volume technique. The deformation of the top of the polystyrene particles by the AFM tip was used to calculate the surface modulus. The compressive moduli are slightly less than the moduli of polystyrene bulk materials. The modulus of the polystyrene microspheres increases with an increase of the VBTA content.  相似文献   

11.
We have examined photopolymerization of highly monodisperse microdroplets of monomer solutions under UV-light radiation. Microdroplets were generated using a modified vibrating aerosol generator, and the diameter of the droplets can be tuned to any size between 5 to 100 m. Polymer particles derived from the droplets were characterized by optical microscopy and SEM. The results show that the polymer particles, under optimum conditions, can be highly spherical and monodisperse. The diameter and morphology of resulting microspheres depend on the diameter of the monomer solution droplets, monomer concentration, photopolymerization reaction temperature, residence time, and droplet dispersion.  相似文献   

12.
Narrow- or monodisperse core-shell polymer microspheres with a dense core and a lightly crosslinked shell with different functional groups, such as ester, hydroxyl, cyano, were prepared by two-stage distillation-precipitation polymerization without any stabilizer. Commercial divinylbenzene (DVB), containing 80% of DVB was polymerized by distillation-precipitation polymerization with 2,2′-azobis(2-methyl propionitrile) (AIBN) as initiator in neat acetonitrile in the absence of any stabilizer as the first stage polymerization and used as the core. When the conversion of DVB was about 35% in the first stage, the second-comonomers with different functional groups, such as methyl methacrylate (MMA), ethyl methacrylate (EMA), butyl methacrylate (BMA), 2-hydroxyethyl methacrylate (HEMA), i-octyl acrylate (i-OA), dodecyl acrylate (DA), methyl acrylate (MA), ethyl acrylate (EA), ethylene glycol dimethacrylate (EGDMA), triethyleneglycol dimethacrylate (TEGDMA), trimethylolpropane trimethacrylate (Trim), and acrylnitrile (AN) together with AIBN were introduced, respectively, into the reaction system and copolymerized with unreacted DVB on the core surface to form a lightly crosslinked functional shell. The resulting core-shell polymer particles were characterized with scanning electron microscopy (SEM) and FT-IR spectra.  相似文献   

13.
14.
Microspheres of amphiphilic triblock polymers PLLA-PEG-PLLA were investigated as carriers for heparin delivery. Two series of PLLA-PEG-PLLA triblock were synthesized and prepared into microspheres with heparin loaded. The microspheres were hollow and the surface morphology varied from smooth to porous. The pore size increased with increasing PEG content. The microsphere size distribution showed that higher PEG content increased the average microsphere size. The release rate of heparin was closely related to the surface morphology of the microspheres. DSC spectra showed that both cold crystalline temperature (Tc) and crystalline melting temperature (Tm) of heparin-loaded microspheres were related to the copolymer composition and the Tc was lower than those of corresponding pure microspheres. [IMAGES: SEE TEXT]  相似文献   

15.
Molecular imprinting polymers (MIPs) against N-Cbz-L-Tyr were prepared utilizing different polymer systems and evaluated in HPLC mode. It was found that MEP utilizing cocktail functional monomers, acrylamide 2-vinylpyridine showed better molecular recognition and better separation ability for the template molecule than those utilizing other functional monomers. MIP utilizing trimethylolpropane trimethacrylate as cross-linker showed higher load capacity and separation factor than those utilizing ethylene glycol dimethacrylate as cross-linker. Increasing the concentration of competing solvent, acetic acid weakened the ionic interaction and hydrogen bonding between the analyte and the functional monomers, 2-vinylpyridine and acrylamide, when the template enantiomer was separated by HPLC. Therefore increasing of the concentration of acetic acid leads to decreasing of capacity factor, separation factor and resolution.  相似文献   

16.
Jin G  Li W  Yu S  Peng Y  Kong J 《The Analyst》2008,133(10):1367-1372
Novel superparamagnetic core-shell imprinting microspheres (MCSIMs) were synthesized using magnetite microspheres with 350 nm diameter and 70 nm thickness silica gel to form core-shell Fe(3)O(4)/SiO(2) composite for template phenylephrine (Phen) recognition and high efficiency separation. Compared to the previous imprinting recognition, the main advantage of this strategy lies in two aspects: one is the high stability and monodispersity of the MCSIMs structure, the other is the use of superparamagnetic Fe(3)O(4)/SiO(2) microspheres as an immobilization matrix and separation tool, thus greatly simplifying time-consuming washing steps. The affinity and selectivity of the MCSIMs were monitored by QCM and electrochemistry measurements. Imprinting microspheres have a remarkable affinity to Phen over that of structurally related molecules, including DA, EP, Phe and Tyr. The relative binding selectivity for different analytes estimated from amperometric signals was Phen : DA : EP = 40 : 5 : 1. The MCSIMs sensor showed a high sensitivity (400 microA mM(-1)), short response time (reaching 98% within 10 s), and broad linear response range from 1 microM to 0.1 mM and low detection limit (0.1 microM). Additionally, the results of control experiments showed that only negligible signal was obtained for non-imprinting microspheres. This could be reasonably attributed to the unique surface pores, charges and especially the nature of the functional groups inside MCSIMs cavities.  相似文献   

17.
A novel surface modification method for titania nanoparticles is provided via the surface‐initiated photocatalytic polymerization with the aid of acrylic acid (AA) or sodium styrene sulfonate (NaSS). The properties of modified titania nanoparticles are investigated with aqueous electrophoresis measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Then the modified titania is used as Pickering stabilizer for further polymerization and the morphology of the resulted polymer microspheres is characterized by TEM and field‐emission scanning electron microscopy. It is proven that the addition of AA or NaSS for the surface‐initiated polymerization can obviously affect the structure and morphology of the final polymer composite microspheres. The formation mechanism of several kinds of polymer particles is also proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Narrow disperse microparticles are formed by dispersion polymerization of commercial divinylbenzene in acetonitrile or ethanol solution in the presence of 2,2′-azobis(2-methylpropionitrile) initiator and polyvinylpyrrolidone stabilizer. The particles have average diameters between 1 and 9 μm depending on monomer concentration, solvent, and temperature. While the smaller particles are relatively smooth, surface texture increases with diameter to give popcorn shapes at 9 μm diameter. High crosslinker concentration is shown to be essential for particle formation. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
20.
Polymer microspheres are obtained by the dropwise addition of a precipitant, containing a polymeric stabilizer, into a polymer solution, containing a polymeric stabilizer. The polymer and stabilizer concentrations, the stirring speed, and the precipitation temperature determine the size and size uniformity of the microspheres. Seven polymer microspheres of polyimide, poly(ether imide), poly(ether ketone), poly(phenylene oxide), polysulfone, poly(vinylidene fluoride), and cellulose diacetate have been prepared with dimethylacetamide as the solvent, with water as the precipitant, and with poly(vinyl alcohol) as the stabilizer. The size and size uniformity of the obtained microspheres are d = 2.3–25.7 μm and ? = 0.15–0.50, respectively (? = σ/d, where ? is the dispersion coefficient, d is the average diameter, and σ is the standard deviation of the diameter). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 159–165, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号