首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Hoon Kim 《Optics Communications》2008,281(5):1108-1112
In millimeter-wave-over-fiber (MWoF) feeder systems, the received millimeter-wave signals at the remote antennas (RAs) can suffer from signal fading by chromatic dispersion of optical fiber. This can be substantially mitigated by Mach-Zehnder modulator (MZM) based photonic up-conversion technique. In this technique, the data signals at intermediate frequency (IF) are frequency up-converted to millimeter-wave frequency by an MZM biased at its transmission null point. However, this scheme requires a costly, high-speed MZM, which will hinder the widespread of this technique for cost-sensitive MWoF applications. Hence, we propose and demonstrate a cost-effective way of reducing the cost of MWoF optical transmitters based on photonic up-conversion technique. We employ a dual wavelength source composed of a directly modulated laser and a polarimetric filter. This source is used to generate a millimeter-wave tone signal and to frequency up-convert the IF data signals to millimeter-wave frequency. The dual wavelength source is also shared with numerous RAs for further cost reduction. Our experimental demonstration performed with 30 Msymbol/s 16-quadrature amplitude modulation signals shows that we can transmit the 20 GHz millimeter-wave signals over 25 km standard single-mode fiber without any transmission penalty.  相似文献   

2.
This paper employs dual-output Mach–Zehnder Modulator (MZM) for optical access networks without optical filters. Light waves generated from multiple laser sources are multiplexed and fed into dual-output MZM. Biasing the dual-output MZM at null point generates central carriers in one output port and first-order sidebands in another output port. Reflective semiconductor optical amplifier modulates both the central carriers and sidebands with wired and wireless data, respectively. The modulated optical signals are combined by polarization beam splitter and transmitted through 25-km single-mode fiber. The performance of the proposed scheme is proved by clear eye-diagrams and great bit error rate (BER) curves. Moreover, the power penalty at the BER of 10-9 is less than 1 dB for both wired and wireless signals. Therefore, the proposed system simultaneously transmits wired and wireless signals.  相似文献   

3.
A novel scheme is proposed for frequency sextupling mm-wave generation based on a laser and an integrated dual-parallel Mach-Zehnder modulator (MZM) without optical filter. Theoretical analysis is presented to suppress the undesired optical sidebands for the high quality generation of frequency sextupling mm-wave signal. The performance of the proposed scheme is evaluated by simulations. Utilizing the integrated MZM consisted of two sub-MZMs with extinction ratio of 30 dB, the optical sideband suppression ratio (OSSR) is as high as 29.9 dB and the radio frequency spurious suppression ratio (RFSSR) exceeds 24 dB without any optical or electrical filter. The impact of the nonideal RF driven voltage and phase difference of RF driven signal applied to two sub-MZMs of the integrated MZM on OSSR and RFSSR is discussed and analyzed. After transmission over fiber, the generated optical mm-wave signal demonstrates good performance. Furthermore, the performance of two cases for the proposed scheme is also compared.  相似文献   

4.
We propose a novel method for simultaneous transmission of OC-192 (9.95328 Gbps) digital data and 60 GHz RF generation in a Standard Single Mode Fiber (SSMF) link utilizing Stimulated Brillouin Scattering (SBS). The system comprises of a 1550 nm DFB Laser diode, Mach Zehnder modulator (MZM), 50 km SSMF and Optical receiver. The receiver includes laser diode for optical pump, a regenerator for data retrieval and a RF bandpass filter for RF generation. This system requires minimum number of RF and optical components for the generation of 60 GHz RF. The remotely generated 60 GHz RF signal may be used for wireless transmission of data. The entire link is simulated in Optisystem software to analyze the system performance.  相似文献   

5.
We propose a novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators (MZMs) for the first time. First, the scheme is investigated theoretically, which suggests that it can be used for sextupling, 12-tupling, and 18-tupling mm-wave generation. Then simulation results are given, 60 GHz mm-wave is generated from 5 GHz, or 10 GHz RF oscillator based on frequency 12-tupling or sextupling, and 90 GHz mm-wave is generated from 5 GHz RF oscillator based on frequency 18-tupling. The optical sideband suppression ratio (OSSR) and the radio frequency spurious suppression ratio (RFSSR) are analyzed by simulation, in which several non-ideal factors are taken into consideration. Results indicate that all the three mm-wave generation methods are practical and very good performance can be obtained when the extinction ratio of the MZM is 30 dB, even if the extinction ratio of the MZM is 20 dB, the performance is still good, especially for the sextupling mm-wave generation method, whose performance is excellent and insensitive to the extinction ratio of MZM, the non-ideal RF driving voltage and the non-ideal DC bias. At last, we set up a RoF system by simulation to verify the transmission performance of the scheme. The BER performance and eye diagrams are given.  相似文献   

6.
In order to improve RF frequency to achieve higher bandwidth and larger capacity, we propose a novel scheme to generate optical single sideband (SSB) millimeter-wave, in which frequency doubling of local radio frequency (RF) is obtained by using one integrated Mach–Zehnder modulator (MZM), and we theoretically investigate the generating principle of SSB. The optical SSB modulation scheme is employed to generate 60 GHz optical mm-wave and the 2.5 Gb/s baseband signal is simultaneously up-converted at the central station (CS) for downlink transmission, and the optical carrier is reused for uplink connection at the base station (BS). The full-duplex 2.5 Gb/s data are successfully transmitted over 40 km standard single-mode fiber (SMF-28) for both uplink connection and downlink connection with less than 2-dB power penalty. Results show the novel 60 GHz RoF system with optical SSB mm-wave signal generation using optical frequency doubling is feasible and we can obtain simple cost-efficient configuration and good performance over long-distance transmission.  相似文献   

7.
SolitonTransmissionUsingActivelyMode-lockedFiberRingLaserat2.5GHzand5GHz¥ZHONGShan;LOUCaiyun;LIUJun;GAOYizhi;ZHOUBingkun(Dept...  相似文献   

8.
In this paper, a novel technique to realize frequency quadrupling in the radio over fiber system is proposed. The frequency quadrupling is achieved by using an integrated Mach–Zehnder modulator (MZM) consisting of a 1 × 4 multimode interference (MMI) coupler and four optical phase modulator arms. Due to the inherent optical splitting ratio and phase relations between the outputs of the MMI coupler, the optical harmonics at + 1 order and ? 3 order are generated corresponding to four times frequency of the microwave drive signal, only by setting the DC bias voltage of the main MZM at the minimum transmission point. That leads to the integrated MZM with reduced complexity compared with the conventional dual-parallel MZM. The effect of the nonideal integrated MZM, including the splitting imbalance and the bias drift, on all the sidebands is also analyzed theoretically. The following simulation results show that the slight deviation of the ideal values would not cause great degradation of the generated optical millimeter-wave signal.  相似文献   

9.
基于半导体光放大器的可调谐多波长光纤激光器   总被引:8,自引:8,他引:0  
报道了一种新型环形腔可调谐多波长光纤激光器,腔内以半导体光放大器为增益介质,利用高双折射光纤构成的高双折射环形镜的滤波特性,在室温下,获得了基本符合ITU-T标准100GHz的17个波长以上的稳定多波长输出.各信道峰值功率差小于6 dB,线宽小于0.102 nm,信噪比大于25 dB.通过调节高双折射环形镜内的偏振控制器状态实现了这一组波长整体在50GHz范围内连续可调谐.并利用实验方法,对该光纤激光器应用于掺铒光纤放大器对多信道放大性能测试的可行性进行了初步探讨.  相似文献   

10.
20GHz注入锁模光纤激光器实验   总被引:3,自引:0,他引:3  
稳定、波长可调谐的窄脉冲光源是未来光时分复用/波分复用光纤通信系统的重要组成部分。报道了一个20GHz的注入锁模光纤激光器的实验。利用一个10GHz的导体体激光器作为光源,最终得到了波长可调谐的重复频率为20GHz、脉冲宽度为12.4ps的光脉冲,波长的调谐范围为16nm。  相似文献   

11.
新型四倍频光生毫米波矢量信号调制技术   总被引:1,自引:0,他引:1  
王勇  李明安  赵强  文爱军  王方艳  尚磊 《光学学报》2012,32(9):906001-33
提出一种基于双并联马赫-曾德尔调制器(MZM)的新型四倍频光生毫米波技术,并用于矢量信号调制。传统的四倍频调制技术,由于数据信号同时调制到+2,-2阶边带上,拍频检测后两个边带上数据信号会产生相位叠加,只适用于不归零码(NRZ)等强度调制格式。提出的矢量信号调制技术将数据信号调制在一个-1阶边带上,另一个+3阶边带不携带数据,在拍频检测后幅度和相位信息被正确保留。同时,四倍频模块降低了传输过程中对电和光器件的带宽需求。理论分析和仿真结果表明,通过此方法产生的携带在60GHz载波上的6.25×108 symbol/s的四相相移键控(QPSK)信号,经过20km单模光纤传输后,误差向量幅度(EVM)损耗可以忽略。  相似文献   

12.
A novel tunable multi-wavelength fiber ring laser based on semiconductor optical amplifier(SOA)is proposed by using a high-birefringence(Hi-Bi)fiber loop mirror(FLM)as wavelength filter.With this configuration,the wavelength spacing of this laser can be varied by using the different lengths of Hi-Bi fiber.8 wavelengths spacing on 450 GHz are experimentally obtained with more than 25-dB signal-to-noise ratio(SNR)for each channel using 1.28-m Hi-Bi fiber in Hi-Bi FLM.The output power variation between different channels is measured to be less than 5.9 dB.The linewidth of each channel is compressed from 0.347 to 0.186 nm by 1.5-m unpumped erbium-doped fiber(EDF).Meanwhile,17 wavelengths spacing on ITU-gird(100 GHz)are also obtained with 5.9-m Hi-Bi fiber in Hi-Bi FLM.All these channels can be tuned together over 0.4 nm.  相似文献   

13.
A frequency sextupling technique for the generation of millimeter-wave (mm-wave) is proposed and investigated. The proposed technique is comprised of two cascaded dual-electrode Mach–Zehnder modulators (MZMs), which are interleaved with Gaussian optical band-pass filter (GOBF). The first MZM, biased at minimum transmission, is only used for optical carrier suppression modulation, and the second MZM, biased at maximum transmission, is used for both even-order optical harmonic generation and data signal modulation. The GOBF between two MZMs is used to suppress the high-order optical harmonics beyond the first-order optical harmonics. On the basis of theoretical analysis and simulated demonstrations, it is concluded that with the use of an RF signal at 10 GHz, which carries the data signal and drives the MZMs, an mm-wave signal at 60 GHz can be obtained. The simulation results show that the proposed sextuple leads to a 7 dB improvement in receiver sensitivity in comparison with the modulation technique, i.e. using two cascaded dual-electrode MZMs without GOBF. Furthermore, the eye diagrams show that the quality of generated mm-wave signal is satisfactory. The proposed technique is verified by experiments.  相似文献   

14.
Abedin KS  Onodera N  Hyodo M 《Optics letters》1999,24(22):1564-1566
We demonstrate the generation of optical pulses at a repetition rate of 64 GHz directly from a frequency-modulated (FM) mode-locked fiber laser. This is achieved by phase modulation at 16 GHz and by initiating of higher-order FM mode locking by use of an intracavity Fabry-Perot filter with a free spectral range of 64 GHz. This process yielded transform-limited pulses with a width of 3.3 ps. We investigated the operating characteristics of the laser and compared them with the characteristics that were predicted theoretically.  相似文献   

15.
高频半导体激光器组件及其特性的研究   总被引:1,自引:0,他引:1  
本文使用DC-PBH型激光二极管芯片,设计制作了实用化封装形式的激光器组件;在理论上和实验上研究了组件的封装模型和小信号频率调制特性,其光响应3dB带宽大于1.8GHz.该器件可满足六次群的光通信系统的带宽要求,也可用于GHz级的微波副载波光通信系统。  相似文献   

16.
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from 1 to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser.  相似文献   

17.
A simple method to generate ultrawideband (UWB) doublet and triplet from nonreturn-to-zero (NRZ) differential phase shift keying (DPSK) signals is proposed and experimentally demonstrated. The proposed configuration consists of a Mach-Zehnder modulator (MZM) to generate NRZ-DPSK signals, a section of single-mode fibre to form a microwave bandpass filter, which is used to generate doublet pulses, and a Gaussian optical bandpass filter (OBF), which serves as a frequency discriminator to generate higher-order UWB pulses. A pair of polarity- reversed triplet pulses is achieved by locating the optical carrier at the positive and negative linear Mopes of the OBF, where the OBF detuning is 0.12nm and -0.2 nm, respectively. The spectra of the pair of UWB triplets have a central frequency of 5 GHz and 5.6 GHz, and have a -10 dB bandwidth of 6.9 GHz and 8.1 GHz, respectively. The UWB pulses remain doublet shape when the light wavelength is located at the peak of the OBF. The spectrum of the doublet has a central frequency of 5.6 GHz and a -10 dB bandwidth of 6.9 GHz.  相似文献   

18.
本文使用DC-PBH型激光二极管芯片,设计制作了实用化封装形式的激光器组件;在理论上和实验上研究了组件的封装模型和小信号频率调制特性,其光响应3dB带宽大于1.8GHz。该器件可满足六次群的光通信系统的带宽要求,也可用于GHz级的微波副载波光通信系统。  相似文献   

19.
俞力  宋跃江  张旭苹 《光学学报》2008,28(s1):14-17
提出并实现了一种脉冲幅度可均匀化的有理谐波锁模光纤激光器。该激光器采用主动有理谐波锁模机制,可获得重复频率为整数倍调制频率的锁模脉冲信号。通过在光纤激光器谐振腔中添加非线性光纤放大环镜,并利用其反射率对输入信号强度的开关特性,实现对锁模脉冲信号的整幅。在1 GHz的调制频率下,分别获得了4 GHz和5 GHz重复频率的锁模脉冲信号输出,并且在一定的980 nm抽运功率下,可通过调节电光调制器的直流偏置电压大小以及调制信号的调制深度,使得脉冲幅度具有较好的均匀性。  相似文献   

20.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号