首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alternative setup for Magic Angle Oriented Spinning Spectroscopy is proposed. Samples were prepared by orienting lipid bilayers onto polymer films, which were wrapped into a spiral so as to fit into 4 or 7 mm MAS rotors. This geometry resulted in narrow line widths and a higher upper spinning limit when compared to the conventional MAOSS setup with stacked glass plates. Whereas orientational information was extracted from low spinning spectra, fast spinning will be applicable to high-resolution multidimensional NMR pulse sequences.  相似文献   

2.
Protein-protein interactions play vital roles in numerous biological processes. These interactions often result in formation of insoluble and noncrystalline protein assemblies. Solid-state NMR spectroscopy is rapidly emerging as a premier method for structural analysis of such systems. We introduce a family of two-dimensional magic angle spinning (MAS) NMR experiments for structural studies of differentially isotopically enriched protein assemblies. Using 1-73((13)C,(15)N)/74-108((15)N) labeled thioredoxin reassembly, we demonstrate that dipolar dephasing followed by proton-assisted heteronuclear magnetization transfer yields long-range (15)N-(13)C correlations arising exclusively from the interfaces formed by the pair of differentially enriched complementary fragments of thioredoxin. Incorporation of dipolar dephasing into the (15)N proton-driven spin diffusion and into the (1)H-(15)N FSLG-HETCOR sequences permits (1)H and (15)N resonance assignments of the 74-108((15)N) enriched C-terminal fragment of thioredoxin alone. The differential isotopic labeling scheme and the NMR experiments demonstrated here allow for structural analysis of both the interface and each interacting protein. Isotope editing of the magnetization transfers results in spectral simplification, and therefore larger protein assemblies are expected to be amenable to these experiments.  相似文献   

3.
De novo site-specific backbone and side-chain resonance assignments are presented for U-15N(1-73)/U-13C,15N(74-108) reassembly of Escherichia coli thioredoxin by fragment complementation, determined using solid-state magic angle spinning NMR spectroscopy at 17.6 T. Backbone dihedral angles and secondary structure predicted from the statistical analysis of 13C and 15N chemical shifts are in general agreement with solution values for the intact full-length thioredoxin, confirming that the secondary structure is retained in the reassembled complex prepared as a poly(ethylene glycol) precipitate. The differential labeling of complementary thioredoxin fragments introduced in this work is expected to be beneficial for high-resolution structural studies of protein interfaces formed by protein assemblies by solid-state NMR spectroscopy.  相似文献   

4.
Magic angle spinning29Si NMR presents a rapid qualitative method of assessing the degree of dealumination of sodium mordenite modified by acid leaching and heat treatment. A quantitative determination of the29Si coordination sphere is hampered by the overlap of chemical shift ranges for Si?O?Al and Si?O?H species. MAS27Al NMR indicates the presence of octahedrally coordinated Al in interstitial sites in all treated samples. On treating mordenite samples at high temperatures (~700°C) much of the Al becomes invisible to the NMR experiment because of its location in sites of low symmetry and large quadrupole coupling constant.  相似文献   

5.
We present the use of 2H magic-angle spinning (MAS) NMR on methyl-deuterated alpha-amino isobutyric acid (Aib) as a new method to obtain fast and accurate structural constraints on peptaibols in membrane-bound environments. Using nonoriented vesicle-reconstituted samples we avoid the delicate preparation of oriented samples, and the use of MAS ensures high sensitivity and thereby very fast acquisition of experimental spectra. Furthermore, given the high content ( approximately 40%) of Aib in peptaibols and the fact that the amino acid Aib may be synthesized from cheap starting materials, even in the case of 2H, 13C, or 15N labeling, this method is ideally suited for studies of the membrane-bound conformation of peptaibols.  相似文献   

6.
Magic Angle Spinning (MAS) (19)F NMR spectra have been obtained and chemical shifts measured for 37 molecules in the gas phase and adsorbed on the surfaces of six common materials: octadecyl- and octyl-functionalised chromatography silicas, Kieselgel 100 silica, Brockmann neutral alumina, Norit activated charcoal and 3-(1-piperidino)propyl functionalised silica. From these six surfaces, octadecyl-silica is selected as a non-polar reference to which the others are compared. The change in chemical shift of a fluorine nucleus within a molecule on adsorption to a surface from the gas phase, Deltadelta(gas)(surface), is described by the empirical relationship: Deltadelta(gas)(surface) = delta(s) + (alpha(s)+pi(s))/alpha(r) (Deltadelta(gas)(reference) - delta(r)) + delta(HBA) + delta(HBD), where delta(s) and delta(r) are constants that describe the chemical shift induced by the electromagnetic field of the surface under investigation and reference surface, alpha(s) and alpha(r) are the relative surface polarisability for the surface and reference, pi(s) is an additional contribution to the surface polarisabilities due to its ability to interact with aromatic molecules, and delta(HBA) and delta(HBD) are measurements of the hydrogen acceptor and donor properties of the surface. These empirical parameters are measured for the surfaces under study. Silica and alumina are found to undergo specific interactions with aromatic reporter molecules and both accept and donate H-bonds. Activated charcoal was found to have an extreme effect on shielding but no specific interactions with the adsorbed molecules. 3-(1-Piperidino)propyl functionalised silica exhibits H-bond acceptor ability, but does not donate H-bonds.  相似文献   

7.
The M2 transmembrane peptide (M2TMP) of the influenza A virus forms a tetrameric helical bundle that acts as a proton-selective channel important in the viral life cycle. The side-chain conformation of the peptide is largely unknown and is important for elucidating the proton-conducting mechanism and the channel stability. Using a 19F spin diffusion NMR technique called CODEX, we have measured the oligomeric states and interhelical side chain-side chain 19F-19F distances at several residues using singly fluorinated M2TMP bound to DMPC bilayers. 19F CODEX data at a key residue of the proton channel, Trp41, confirm the tetrameric state of the peptide and yield a nearest-neighbor interhelical distance of approximately 11 A under both neutral and acidic pH. Since the helix orientation is precisely known from previous 15N NMR experiments and the backbone channel diameter has a narrow allowed range, this 19F distance constrains the Trp41 side-chain conformation to t90 (chi1 approximately 180 degrees , chi2 approximately 90 degrees ). This Trp41 rotamer, combined with a previously measured 15N-13C distance between His37 and Trp411, suggests that the His37 rotamer is t-160. The implication of the proposed (His37, Trp41) rotamers to the gating mechanism of the M2 proton channel is discussed. Binding of the antiviral drug amantadine to the peptide does not affect the F-F distance at Trp41. Interhelical 19F-19F distances are also measured at residues 27 and 38, each mutated to 4-19F-Phe. For V27F-M2TMP, the 19F-19F distances suggest a mixture of dimers and tetramers, whereas the L38F-M2TMP data indicate two tetramers of different sizes, suggesting side chain conformational heterogeneity at this lipid-facing residue. This work shows that 19F spin diffusion NMR is a valuable tool for determining long-range intermolecular distances that shed light on the mechanism of action and conformational heterogeneity of membrane protein oligomers.  相似文献   

8.
De novo site-specific 13C and 15N backbone and sidechain resonance assignments are presented for uniformly enriched E. coli thioredoxin, established using two-dimensional homo- and heteronuclear solid-state magic angle spinning NMR correlation spectroscopy. Backbone dihedral angles and secondary structure were derived from the statistical analysis of the secondary chemical shifts, and are in good agreement with solution values for the intact full-length thioredoxin, with the exception of a small number of residues located at the termini of the individual secondary structure elements. A large number of cross-peaks observed in the DARR spectra with long mixing times correspond to the pairs of carbon atoms separated by 4-6 angstroms, suggesting that DARR could be efficiently employed for observation of medium- and long-range correlations. The 108 amino acid residue E. coli thioredoxin is the largest uniformly enriched protein assigned to this degree of completeness by solid-state NMR spectroscopy to date. It is anticipated that with a combination of two-dimensional correlation experiments and high magnetic fields, resonance assignments and secondary structure can be generally derived for other noncrystalline proteins.  相似文献   

9.
Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane proteins and amyloid fibrils. Extensive deuteration of the protein allows multidimensional experiments with exceptionally high sensitivity and resolution to be obtained. Here we present an experimental strategy to measure highly unambiguous spatial correlations for distances up to 13 ?. Two complementary three-dimensional experiments, or alternatively a four-dimensional experiment, yield highly unambiguous cross-peak assignments, which rely on four encoded chemical shift dimensions. Correlations to residual aliphatic protons are accessible via synchronous evolution of the (15)N and (13)C chemical shifts, which encode valuable amide-methyl distance restraints. On average, we obtain six restraints per residue. Importantly, 50% of all restraints correspond to long-range distances between residues i and j with |i - j| > 5, which are of particular importance in structure calculations. Using ARIA, we calculate a high-resolution structure for the microcrystalline 7.2 kDa α-spectrin SH3 domain with a backbone precision of ~1.1 ?.  相似文献   

10.
The fluorinated anti-psychotic drug trifluoperazine (TFP) has been shown to be a K(+)-competitive inhibitor of gastric H(+)/K(+)-ATPase, a membrane-embedded therapeutic target for peptic ulcer disease. This paper describes how variable contact time (19)F cross-polarization magic angle spinning (VCT-CP/MAS) NMR has been used to probe the inhibitory interactions between TFP and H(+)/K(+)-ATPase in native gastric membranes. The (19)F CP/MAS spectra for TFP in H(+)/K(+)-ATPase enriched (GI) gastric membranes and in control membranes containing less than 5 nmol of the protein indicated that the drug associates with the membranes independently of the presence of H(+)/K(+)-ATPase. The (19)F peak intensities in the VCT-CP/MAS experiment confirmed that TFP undergoes slow dissociation (k(off) < 100 s(-1)) from binding sites in GI membranes, and more rapid dissociation (k(off) < 100 s(-1)) from control membranes. The spectra showed that up to 40% of bound TFP was displaced from GI membranes by 100 mM K(+) and by the K(+)-competitive inhibitor TMPIP, but TFP was not displaced from the control membranes. Hence the spectra of TFP in GI membranes represent the drug bound to the K(+)-competitive inhibitory site of H(+)/K(+)-ATPase and to other non-specific sites. The affinity of TFP for the K(+)-competitive site (K(D) = 4 mM) was determined from a binding curve of (19)F peak intensity versus TFP concentration after correction for non-specific binding. The K(D) was much higher than the IC(50) for ATPase inhibition (8 microM), which suggests that the substantial non-specific binding of TFP to the membranes contributes to ATPase inhibition. This novel approach to probing ligand binding can be applied to a wide range of membrane-embedded pharmaceutical targets, such as G-protein coupled receptors and ion channels, regardless of the size of the protein or strength of binding.  相似文献   

11.
12.
Application of rapid sample rotation and radiofrequency irradiation in magic angle spinning (MAS) NMR of lipid bilayers can significantly increase the sample temperature. In this work, we studied the extent of heating during the acquisition of 1H-decoupled 13C MAS spectra of hydrated dimyristoylphosphatidylcholine (DMPC) in the L(alpha) phase. First, we describe a simple procedure for determining the increase in temperature by observing the shift of the 1H water signal. The method is then used to identify and assess the various factors that contribute to the sample heating. The important factors discussed in this paper include: (i) the spinning speed, (ii) the variable-temperature gas pressure, (iii) the rotor geometry, (iv) the power, duration and frequency of the radiofrequency irradiation and (v) the hydration level. A comparison of different heteronuclear decoupling schemes in terms of their ability to produce highly resolved 13C spectra of DMPC is also reported.  相似文献   

13.
In this paper, we present the measurement of (15)N-T(1) relaxation times in the solid state for a perdeuterated protein for which exchangeable protons are back substituted during recrystallization using a buffer which contains 10% H(2)O and 90% D(2)O. We find large variations of the (15)N relaxation time, even within the same beta sheet. By comparing (15)N-T(1) relaxation times measured for a protonated and a deuterated protein (using the above mentioned approach), we conclude that (1)H driven (15)N,(15)N spin diffusion has a significant impact on the absolute (15)N relaxation time in protonated proteins. This effect is important for a quantitative analysis of relaxation data in terms of molecular dynamics.  相似文献   

14.
High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR) for paramagnetic systems. Spinning-speed dependence of 1H MAS spectra showed that very fast MAS (VFMAS) at 24-28 kHz enhanced sensitivity by a factor of 12-18, compared with the sensitivity of 1H SSNMR spectra under moderate MAS at 10 kHz, for Cu(dl-alanine)2.H2O and Mn(acac)3, for which the spectral ranges due to 1H paramagnetic shifts reach 200 and 1000 ppm, respectively. It was theoretically and experimentally confirmed that the absolute sensitivity of 1H VFMAS for small paramagnetic complexes such as Cu(dl-alanine)2 can be an order of magnitude higher than that of equimolar diamagnetic ligands because of short 1H T1 ( approximately 1 ms) of the paramagnetic systems and improved sensitivity under VFMAS. On the basis of this demonstrated high sensitivity, 1H SSNMR micro analysis of paramagnetic systems in a nanomole scale is proposed. Applications were performed on two polymorphs of Cu(II)(8-quinolinol)2, which is a suppressor of human cancer cells. It was demonstrated that 1H VFMAS SSNMR spectra accumulated for 20 nmol of the polycrystalline samples in 10 min enabled one to distinguish alpha- and beta-forms of Cu(II)(8-quinolinol)2 on the basis of shift positions and line widths.  相似文献   

15.
A recently proposed experimental scheme for achieving uniform cross polarization enhancement of low-gamma nuclear species in solids under magic angle spinning, termed quantitative cross polarization (QUCP) [Hou et al., Chem. Phys. Lett. 421, 356 (2006)], is described, supported with comprehensive theoretical analysis, numerical simulation, and experimental investigation with both uniformly labeled and naturally abundant solids. This method combines cross polarization with dipolar-assisted rotational resonance (DARR) [Takegoshi et al., Chem. Phys. Lett. 344, 631 (2001)] broadband homonuclear recoupling technique to achieve quantitative CP spectra under fast magic angle spinning. In addition to the correct and systematical interpretation on the phenomenon we reported in the previous Letter, a number of general guidelines for performing QUCP experiments are presented in this work. It is firmly established that while the enhancement factor in QUCP depends on the CP contact time, uniform enhancement can nevertheless be realized for all types of carbon group. For natural abundance samples, the polarization transfer rate is generally slower than that in labeled samples, but quasi-equilibrium among dilute spins in the mixing period can always be reached and uniform enhancement can be achieved albeit the DARR irradiation time needed can be much longer. For labeled samples, the time gain of QUCP experiment is almost the same as that of conventional CP. For natural abundance samples, it is generally much better than single-pulse experiment. Various representative systems, including uniformly (13)C-labeled DL-alanine and (13)C, (15)N labeled L-tyrosine, as well as naturally abundant alanine, tyrosine, and monoethyl fumarate, are used to verify the validity of our theoretical analysis and numerical simulation and to demonstrate the utility and advantages of the present approach.  相似文献   

16.
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.  相似文献   

17.
The feasibility of using solid-state magic-angle-spinning NMR spectroscopy for in situ structural characterization of the LR11 (sorLA) transmembrane domain (TM) in native Escherichia coli membranes is presented. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer's disease. The background signals from E. coli lipids and membrane proteins had only minor effects on the LR11 TM resonances. Approximately 50% of the LR11 TM residues were assigned by using (13)C PARIS data. These assignments allowed comparisons of the secondary structure of the LR11 TM in native membrane environments and commonly used membrane mimics (e.g., micelles). In situ spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis and offers the opportunity to investigate how membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding affect the protein structure.  相似文献   

18.
19.
Variable angle spinning (VAS) experiments provide a useful method for measuring long-range dipolar couplings and obtaining isotropic-anisotropic correlation spectra. These experiments make it possible to obtain correlations between isotropic and anisotropic spectra without altering the chemical composition of the sample. They also allow working with very strongly oriented systems that are not accessible to solution-state techniques. In this communication, we discuss recent hardware developments in our laboratory and show representative data from small molecules in strongly oriented liquid-crystalline samples.  相似文献   

20.
A series of 11 oxovanadium(V) complexes mimicking the active site of vanadium haloperoxidases have been investigated by (51)V magic angle spinning NMR spectroscopy and density functional theory (DFT). The MAS spectra are dominated by the anisotropic quadrupolar and chemical shielding interactions; for these compounds, C(Q) ranges from 3 to 8 MHz, and delta(sigma) is in the range 340-730 ppm. The quadrupolar coupling and chemical shielding tensors as well as their relative orientations have been determined by numerical simulations of the spectra. The spectroscopic NMR observables appear to be very sensitive to the details of the electronic and geometric environment of the vanadium center in these complexes. For the four crystallographically characterized compounds from the series, the quadrupolar and chemical shielding anisotropies were computed at the DFT level using two different basis sets, and the calculated tensors were in general agreement with the experimental solid-state NMR data. A combination of (51)V solid-state NMR and computational methods is thus beneficial for investigation of the electrostatic and geometric environment in diamagnetic vanadium systems with moderate quadrupolar anisotropies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号