首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel donor imidazole derivative, 2-(1-phenyl-1H-imidazo [4,5-f][1,10]phenanthrolin-2-yl)-phenol (PIPP) was screened as highly sensitive chemisensor for transition metal ions and it can be used as a "multi-way" optically switchable material. Solvatochromic effects on the fluorescence behaviour of PIPP were studied in different solvents. The fluorescence of PIPP was highly sensitive to both the polarity as well as protic nature of the solvent. Fluorescence (Forster) resonance energy transfer (FRET) process from PIPP to a potent bioactive indoloquinolizine molecule was studied and it is argued that long-range dipole-dipole interaction is operating for the energy transfer mechanism. The energy transfer efficiency (E) and the distance between the acceptor and the donor (r(0)) have been determined.  相似文献   

2.
To extend the spectral response region of squaraine dye (SQ)-sensitized solar cell, eosin Y (EY) is encapsulated in the SQ-sensitized nanocrystalline thin film. EY is first adsorbed on nanocrystalline TiO2 thin film (n-TiO2), then a thin layer of EY contained ZnO (EY-ZnO) is electrodeposited, and SQ dye is finally sensitized to form two dye-sensitized nanocrystalline thin film with a structure of n-TiO2/EY/EY-ZnO/SQ. There is a perfect spectral overlap between the emission of EY and the absorption of SQ; EY as an energy donor simultaneously transfers both electron and hole to the energy acceptor SQ according to the Förster resonance energy transfer (FRET) process. EY shifts the spectral response edge of SQ-sensitized solar cell toward blue from 550 to 450 nm through the FRET process in this new structure. Two dye-sensitized nanocrystalline thin film demonstrates a significant enhancement in light harvesting and photocurrent generation due to the FRET process. The thickness of the EY-ZnO thin layer and spectral overlap between emission of donor dye and absorption of acceptor dye are two important factors that affect the FRET process between EY and SQ in the structure of n-TiO2/EY/EY-ZnO/SQ.  相似文献   

3.
Proton transfer reactions were studied in all titratable pairs of amino acid side chains where, under physiologically reasonable conditions, one amino acid may function as a donor and the other one as an acceptor. Energy barriers for shifting the proton from donor to acceptor atom were calculated by electronic structure methods at the MP2/6-31++G(d,p) level, and the well-known double-well potentials were characterized. The energy difference between both minima can be expressed by a parabola using as argument the donor-acceptor distance R(DA). In this work, the fit parameters of the quadratic expression are determined for each donor-acceptor pair. Moreover, it was found previously that the energy barriers of the reactions can be expressed by an analytical expression depending on the distance between donor and acceptor and the energy difference between donor and acceptor bound states. The validity of this approach is supported by the extensive new data set. This new parameterization of proton transfer barriers between titratable amino acid side chains allows us to very efficiently estimate proton transfer probabilities in molecular modelling studies or during classical molecular dynamics simulation of biomolecular systems.  相似文献   

4.
The temperature effect on the efficiency of the triplet energy transfer between different molecules included in molecular layers by the Langmuir-Blodgett (LB) procedure was studied. The efficiency of the triplet energy transfer from the LB film of the donor to the LB film of the acceptor is determined by the homogeneous broadening of the energy donor levels.  相似文献   

5.
We report on the heterobimetallic system, Eu[Ag(x)Au(1-x)(CN)(2)](3) (x = 0-1) in which sensitization of europium luminescence occurs by energy transfer from [Ag(x)Au(1-x)(CN)(2)](-) donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. These layered systems exhibit interesting properties, one of which is their emission energy tunability when excited at different excitation wavelengths. In this paper, we report on their use as donor systems with Eu(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)(2)(-) and Au(CN)(2)(-) donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation. Additionally, more acceptor states are available in the high silver loading mixed metal Eu(III) complexes. The results from a crystal structure determination and Raman experiments are also presented in this paper and provide information about metallophilic interactions in the closed-shell d(10) metal-metal [Ag(x)Au(1-x)(CN(2)](-) dicyanide clusters.  相似文献   

6.
We characterize a series of dicyanovinyl-terthiophenes with different alkyl side chains. Variations of side chain substitution patterns and length mainly affect the morphology of the evaporated thin films, which in turn sensitively influences properties like absorption, energy levels, and thin film roughness. To investigate changes in transfer processes between electron donor (D) and acceptor (A) molecules due to side chain variations, we use photoinduced absorption spectroscopy (PIA). PIA probes the long-living photoexcited species at the D-A interface: triplet excitons, cations, and anions. For a blend layer of dicyanovinyl-terthiophene and the electron acceptor fullerene C(60), an energy transfer via the singlet and triplet manifold of C(60) occurs. The recombination dynamics of the triplet excitons reveal two components that differ in their lifetime and generation rate by 1 order of magnitude. By comparing the dynamics of triplet excitons in neat and blend layers, we estimate the energy transfer efficiency in dependence of the type of side chain. The compound with methyl side chains shows remarkable properties regarding thin film absorption, surface roughness, and energy transfer efficiency, which we attribute to the specific nanomorphology of the thin film.  相似文献   

7.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

8.
The constituent cavitands of a cylindrical capsule were labeled with donor and acceptor fluorophores, and fluorescence resonance energy transfer (FRET) was employed as a tool to study the dynamics of self-assembly. When donor and acceptor dyes are present in the same capsular assembly, they are brought within 25 A of each other, a distance suitable for efficient energy transfer to occur between them. This allowed for the study of interacting species at nanomolar concentrations providing information unattainable from NMR experiments. The kinetic stability of the capsule in the presence of various guest molecules was investigated which revealed a range of more than 4 orders of magnitude in the rates of cylindrical capsule exchange. While the thermodynamic stability of the capsule generally dictates the self-assembly dynamics, it was discovered that longer rigid guests can impart a significant kinetic barrier to monomer exchange.  相似文献   

9.
We introduce a mathematically rigorous analysis of a generalized spin-boson system for the treatment of a donor–acceptor (reactant-product) quantum system coupled to a thermal quantum noise. The donor/acceptor probability dynamics describes transport reactions in chemical processes in presence of a noisy environment – such as the electron transfer in a photosynthetic reaction center. Besides being rigorous, our analysis has the advantages over previous ones that (1) we include a general, non energy-conserving system-environment interaction, and that (2) we allow for the donor or acceptor to consist of multiple energy levels lying closely together. We establish explicit expressions for the rates and the efficiency (final donor–acceptor population difference) of the reaction. In particular, we show that the rate increases for a multi-level acceptor, but the efficiency does not.  相似文献   

10.
Effect of diffusion on excitation energy transfer and migration in a dye pair sodium fluorescein (donor) and Rhodamine-6G (acceptor) has been studied for different viscosities by both steady state and time domain fluorescence spectroscopic measurements. The donor-donor interaction appears to be weaker as compared to donor-acceptor interaction and thus favors direct Forster-type energy transfer. Interestingly, at low viscosity (water in this case) transfer appears to be controlled by material diffusion/energy migration. Further, acceptor dynamics reveals the fact that direct Forster transfer dominates in viscous media.  相似文献   

11.
Semiempirical Hartree-Fock techniques have been applied to assess the molecular parameters governing the efficiency of photoinduced charge generation and recombination processes in donor/acceptor complexes involving a three-ring oligophenylenevinylene as donor and perylene bisimide as acceptor. The corresponding rates have been estimated in the framework of the Marcus-Levich-Jortner formalism for different geometries of the complexes. The results indicate that dissociation pathways involving the lowest two charge transfer excited states contribute significantly to the dynamics of the whole process. The rates are found to be strongly sensitive to the relative position of the donor and acceptor units and can be rationalized in terms of symmetry arguments applied to relevant electronic levels.  相似文献   

12.
Magnetic field effects on the fluorescence spectrum and on the electrofluorescence spectrum (plots of the electric field-induced change in fluorescence intensity as a function of wavelength) have been examined in electron donor and acceptor pairs of N-ethylcarbazole (ECZ) and dimethyl terephthalate (DMTP) in polymer films at different ratios of donor/acceptor concentration. In the mixture having a high concentration of ECZ, electric field-induced quenching of the exciplex fluorescence originating from the photoinduced electron transfer becomes less efficient in the presence of a magnetic field. In the mixture having a low concentration of ECZ, on the other hand, no magnetic field effect was observed in the electrofluorescence spectrum, indicating that the hole carrier plays an important role in synergy effects of magnetic and electric field effects on exciplex fluorescence. In the absence of the applied electric field, the magnetic field does not affect either exciplex fluorescence with a peak at 450 nm or LE fluorescence emitted from the locally excited state of ECZ but enhances the broad emission with a peak at approximately 380 nm, probably assigned to the fluorescence of another type of exciplex between ECZ and DMTP. Thus, two kinds of magnetic field effects on fluorescence have been observed in a mixture of ECZ and DMTP in a polymer film.  相似文献   

13.
Electronic excitation energy transfer has been studied by single molecule spectroscopy in donor/acceptor dyads composed of a perylenediimide donor and a terrylenediimide acceptor linked by oligo(phenylene) bridges of two different lengths. For the shorter bridge (three phenylene units) energy is transferred almost quantitatively from the donor to the acceptor, while for the longer bridge (seven phenylene units) energy transfer is less efficient as indicated by the occurrence of donor and acceptor emission. To determine energy transfer rates and efficiencies at the single molecule level, several methods have been employed. These comprise time-correlated single photon counting techniques at room temperature and optical linewidth measurements at low temperature (1.4 K). For both types of measurement we obtain broad distributions of the rate constants of energy transfer. These distributions are simulated in the framework of Forster theory by properly taking into account static disorder and the flexibility of the dyads, as both effects can substantially contribute to the distributions of energy transfer times. The rate constants of energy transfer obtained from the calculated distributions are smaller on average than those extracted from the experimental distributions, whereby the discrepancy is larger for the shorter bridge. Furthermore, by plotting the experimentally determined transfer rates against the individual spectral overlaps, approximately linear dependencies are found being indicative of a Forster-type contribution to the energy transfer. For a given single molecule such a linear dependence could be followed by spectral diffusion induced fluctuations of the spectral overlap. The discrepancies between measured energy transfer rates and rates calculated by Forster theory are briefly discussed in light of recent results of quantum chemical calculations, which indicate that a bridge-mediated contribution is mainly responsible for the deviations from Forster theory. The availability of the inhomogeneous distributions of donor and acceptor electronic transition frequencies allows for comparing the energy transfer process at liquid helium and room temperature for the same set of molecules via simple simulations. It is found that on average the energy transfer is by a factor of approximately 3 faster at room temperature, which is due to an increase of spectral overlap.  相似文献   

14.
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.  相似文献   

15.
Herein, we report a highly sensitive luminescent thin film chemosensor constructed out of a small-molecule donor/acceptor system. Two types of films were compared: one using a small-molecule crystalline donor/acceptor pair and the other using a donor-graft polymer/small-molecule acceptor pair. The acceptor selected for this proof of concept responds to acid, causing its absorption and emission bands to red-shift, which increases spectral overlap with the donor. This increase in overlap greatly enhances energy transfer from the acceptor to the donor. Signal amplification was ascertained by measuring the ratio of acceptor fluorescence when the donor was excited versus direct excitation of the acceptor. Both types of films exhibited large amplification. For the polymeric system, the mechanism of energy migration was investigated by the use of steady-state fluorescence spectroscopy. The mechanism was determined to be dominated by an exciton-hopping process.  相似文献   

16.
We have investigated how the spin state of an acceptor influences the photophysical processes in a donor-bridge-acceptor (D-B-A) system. The system of choice has zinc porphyrin as the electron donor and high- or low-spin iron(III) porphyrin as the acceptor. The spin state of the acceptor porphyrin is switched simply by coordinating imidazole ligands to the metal center. The D-A center-center distance is 26 A, and the bridging chromophore varies from pi-conjugated to a sigma-bonded system. The presence of a high-spin iron(III) porphyrin in such systems has previously been shown to significantly enhance intersystem crossing in the remote zinc porphyrin donor, whereas no significant electron transfer to the iron porphyrin acceptor was observed, even though the thermodynamics would allow for photoinduced electron transfer. Here, we demonstrate that by switching the acceptor to a low-spin state, the dominating photophysical process is drastically changed; the low-spin system shows long-range electron transfer on the picosecond time-scale, and intersystem crossing occurs at its "normal" rate.  相似文献   

17.
A novel dark resonance energy transfer (DRET) off–on cassette SR1 was constructed by coupling a silole donor with a rhodamine acceptor. Due to the intramolecular rotations of the phenyl rings, the silole fluorophore served as a dark donor in solution state and fluorescence leakage from the donor emission could be avoided. Binding with Sn4+ ion induced the ring‐opening of the rhodamine acceptor, thus increase the overlapping between the emission spectra of the donor and absorption spectra of the acceptor. DRET was turned on and energy was transferred from the silole donor to the rhodamine acceptor. Emission from the rhodamine acceptor was achieved with a large Stokes shift up to 198 nm. The sensor showed good sensitivity and selectivity towards Sn4+ to other metal ions in methanol aqueous solution through the formation of a 1:1 complex between SR1 and Sn4+. This research provides a new approach for the development of rhodamine‐based sensors towards metal ions with large Stokes shifts.  相似文献   

18.
Liu B  Zeng F  Liu Y  Wu S 《The Analyst》2012,137(7):1698-1705
Due to the hazardous nature of mercury ions, the development of a cost effective, sensitive and field-portable sensor is of high significance for both industry and civilian use. In this work, a FRET-based ratiometric sensor for detecting mercury ions in water was fabricated by depositing a multilayered silica structure on a quartz plate. For the preparation of the film-based sensor, a silica support layer was first deposited on the quartz plate by using the sol-gel spin-coating procedure, and three ultrathin functional layers (donor, spacer and receptor) were then deposited on the support layer by dip-coating in a stepwise manner in toluene solution. As the film-based sensor was placed into an aqueous solution of Hg(2+), the non-fluorescent receptor (a spirolactam rhodamine derivative) on the film surface could form a complex with the mercury ion and act as the acceptor of the energy transfer. Upon excitation, the donor (a nitrobenzoxadiazolyl derivative, NBD) could transfer its excited energy from the donor layer to the acceptor on the film surface via the 'through space' energy transfer process, thus realizing the FRET-based ratiometric sensing for mercury ions. The sensor can selectively detect Hg(2+) in water with the detection limit of 1 μM. This solid film sensor is capable of being easily-portable and visualized detection. This strategy may offer new approaches for constructing other FRET-based solid-state devices.  相似文献   

19.
Electronic excitation energy transfer has been carried out between molecules of carbocyanine dyes bound noncovalently to DNA. 3,3′,9-Triethyl-5,5′-dimethyloxacarbocyanine iodide was used as an energy donor and 3,3′-diethylthiacarbocyanine iodide as an acceptor dye. In this process, the band belonging to the donor is observed in the fluorescence excitation spectrum of the acceptor. Donor fluorescence quenching by the acceptor in the presence of DNA was studied. The results of the experiments are discussed in terms of the Dye-DNA stoichiometric complex formation and with respect to concentrating the dyes in the microphase (pseudophase) of the biopolymer.  相似文献   

20.
We theoretically analyze the excitation energy transfer between two closely spaced linear molecular J-aggregates, whose excited states are Frenkel excitons. The aggregate with the higher (lower) exciton band edge energy is considered as the donor (acceptor). The celebrated theory of F?rster resonance energy transfer (FRET), which relates the transfer rate to the overlap integral of optical spectra, fails in this situation. We point out that, in addition to the well-known fact that the point-dipole approximation breaks down (enabling energy transfer between optically forbidden states), also the perturbative treatment of the electronic interactions between donor and acceptor system, which underlies the F?rster approach, in general loses its validity due to overlap of the exciton bands. We therefore propose a nonperturbative method, in which donor and acceptor bands are mixed and the energy transfer is described in terms of a phonon-assisted energy relaxation process between the two new (renormalized) bands. The validity of the conventional perturbative approach is investigated by comparing to the nonperturbative one; in general, this validity improves for lower temperature and larger distances (weaker interactions) between the aggregates. We also demonstrate that the interference between intraband relaxation and energy transfer renders the proper definition of the transfer rate and its evaluation from experiment a complicated issue that involves the initial excitation condition. Our results suggest that the best way of determining this transfer rate between two J-aggregates is to measure the fluorescence kinetics of the acceptor J-band after resonant excitation of the donor J-band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号