首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic resonance imaging (MRI) provides a powerful tool for the investigation of chemical structures in optically opaque porous media, in which chemical concentration gradients can be visualized, and diffusion and flow properties are simultaneously determined. In this paper we give an overview of the MRI technique and review theory and experiments on the formation of chemical waves in a tubular packed bed reactor upon the addition of a nonlinear chemical reaction. MR images are presented of reaction-diffusion waves propagating in the three-dimensional (3D) network of channels in the reactor, and the 3D structure of stationary concentration patterns formed via the flow-distributed oscillation mechanism is demonstrated to reflect the local hydrodynamics in the packed bed. Possible future directions regarding the influence of heterogeneities on transport and reaction are discussed.  相似文献   

2.
3.
Magnetic resonance imaging is used to follow the removal process of a visco-elastic surfactant (VES) fracturing fluid in Bentheimer sandstone cores at typical reservoir temperatures (T=333 K). Two displacing fluids were investigated, a Gadolinium doped water phase (1M NaCl solution), and a Gadolinium doped hydrocarbon phase (Mineral Spirits). In addition to flow characteristics obtained by conventional core-flooding, i.e., the macroscopically averaged volumetric flow rates and differential pressures, we have also measured the saturation profiles and characteristic displacement patterns during all stages of the removal process. To acquire these data we have used quantitative one-dimensional chemically specific profiling along with fast two-dimensional imaging experiments while flooding Bentheimer sandstone cores in situ in the spectrometer. Our results show that both displacement processes (complex fluid displaced by water or hydrocarbon phase) are dominated by the large viscosity contrasts present. However, distinct differences were found between the displacement characteristics of water and hydrocarbon, which confirmed the sensitivity of the complex fracturing fluid to the displacing fluid.  相似文献   

4.
In this study, the displacement processes were observed as gaseous or supercritical CO2 was injected into n-decane-saturated glass beads packs using a 400-MHz magnetic resonance imaging (MRI) system. Two-dimensional images of oil distribution in the vertical median section were obtained using a spin-echo pulse sequence. Gas channeling and viscous fingering appeared obviously in immiscible gaseous CO2 displacement. A piston-like displacement front was detected in miscible supercritical CO2 displacement that provided high sweep efficiency. MRI images were processed with image intensity analysis methods to obtain the saturation profiles. Final oil residual saturations and displacement coefficients were also estimated using this imaging intensity analysis. It was proved that miscible displacement can enhance the efficiency of CO2 displacement notably. Finally, a special coreflood analysis method was applied to estimate the effects of capillary, viscosity and buoyancy based on the obtained saturation data.  相似文献   

5.
6.
NMR imaging is finding broad applications in nonbiological areas including the study of fluid flow and fluid ingress in porous media. The porous media include at the one end mineral rocks and various building materials through various solid plastic materials to foodstuffs at the other end of the spectrum. The fluids within these various media range from crude oil and water mixtures, and water itself, to a range of organic solvents in plastic materials. This paper is concerned with the flow and ingress of water through Bentheimer sandstone and Ninian reservoir specimens, and also in solid nylon blocks.  相似文献   

7.
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-mum average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time T(E)=40 ms, and 6-10% in consolidated porous media for T(E)=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm(3) and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed.  相似文献   

8.
A personal view of the field of magnetic resonance in porous media is presented in which an attempt is made to survey the current status and achievements, to highlight some of the contributions made by my group over the years and, at the end, to try and identify where further effort and growth points may be perceived. All this is done with the knowledge that the first and last sections are certain to be partial, incomplete and wrong, at least in part, and that the middle section describes work carried out by some of the many excellent students, post-doctoral researchers and other colleagues with whom it has been a pleasure to collaborate over a forty year research career.  相似文献   

9.
Percolation invasion displacement of a compressible defender is examined for two cases: when only the smallest accessible site is entered at each step and when all accessible sites less than the size given by a reducing back pressure are entered at each time step. Although the fractions of invading fluid are different, their scaling properties are equivalent. The effect of limited control of a back pressure in a real displacement and the effect of viscosity in a real time displacement are examined. In these cases the scaling properties of a percolation process at breakthrough are removed. As a result, one should expect that realistic displacement models will not have the singular properties usually attributed to percolation processes.  相似文献   

10.
11.
12.
13.
Low field Magnetic Resonance Imaging is used to study oil diffusion in a wet soil model. A complete discrimination between oil and water has been obtained by using Inversion-Recovery pulse sequence. The time evolution of the oil image gives the parameters which describe the dense fluid diffusion rate in the whole space directions.  相似文献   

14.
Quantitative flow and diffusion measurements have been made for water in model porous media, using magnetic resonance micro-imaging methods. The samples consisted of compacted glass beads of various sizes down to 1 mm diameter. Typical flow and diffusion images exhibited a spatial resolution of 117 μm × 117 μm and velocities in the range 1–2 mm/s. Comparison of volume flow rates calculated from the flow velocity maps with values measured directly yielded good agreement in all cases. There was also good agreement between the mean diffusion coefficient of water calculated from the diffusion maps and the bulk diffusion coefficient for pure water at the same temperature. In addition, the mean diffusion coefficient did not depend on the pore sizes in the bead diameter range of 1–3 mm. Our results also show that partial volume effects can be compensated by appropriate thresholding of the images prior to the final Fourier transformation in the flow-encoding dimension.  相似文献   

15.
Pulsed field gradient nuclear magnetic resonance (PFG-NMR) and NMR imaging were used to study temporal and spatial domains of an electrokinetically-driven mobile phase through open and packed segments of capillaries. Characteristics like velocity distribution and an asymptotic dispersion are contrasted to viscous flow behavior. We show that electroosmotic flow in microchannel geometries can offer a significant performance advantage over the pressure-driven flows at comparable Peclét numbers, indicating that velocity extremes in the pore space of open tubes and packed beds are drastically reduced. An inherent problem of capillary electrochromatography that we finally address is the existence of wall effects when in the general case the surface zeta-potentials of the capillary inner wall and the adsorbent particles are different. Using dynamic NMR microscopy we were able resolve this systematic velocity inequality of the flow pattern which strongly influences axial dispersion and may be responsible for long time-tails of velocity distribution in the mobile phase.  相似文献   

16.
Three-dimensional MRI and flow visualisation data are presented for single and two-phase flow occurring within packed beds of glass spheres. The initial motivation for this work has been to understand the operation of fixed-bed reactors used in many chemical processing operations; these systems also serve as model porous media in which to investigate the effect of the structure of a pore space on the flow phenomena occurring within it. For the case of single-phase flow, maps of the liquid shear rate components are calculated from which forces on individual spheres within the bed are obtained. The velocity histogram for flow transverse to the direction of superficial flow is exponential in both negative and positive directions. This form of the velocity histogram implies an exponential form for the displacement propagator, in contrast to the Gaussian distribution obtained by pulsed gradient spin echo measurements. This difference arises because the spatially resolved velocity imaging sequence measures only the average velocity within each voxel and is insensitive to the effects of incoherent (diffusive) motion. Visualisations of air-water flow through a sphere pack are also reported and the capability of MRI to yield information on rivulet formation and surface wetting characteristics is illustrated.  相似文献   

17.
Magnetic resonance for fluids in porous media at the University of Bologna   总被引:3,自引:0,他引:3  
The magnetic resonance in porous media (MRPM) community is now a vast community of scientists from all over the world who recognize magnetic resonance as an instrument of choice for the characterization of pore space and of the distribution, diffusion and flow of fluids inside a vast range of different materials. The MRPM conferences are the occasions in which this community gets together, compares notes and grows. The scene was different in 1990, when this series of conferences was promoted at Bologna. I will go briefly over the history of these events, showing the role played by the University of Bologna and in particular by the intuition, ingenuity and passion of Giulio Cesare Borgia. The MRPM work at Bologna began in the mid-1980s. New correlations were found among parameters from NMR relaxation measurements and oil field parameters such as porosity, permeability to fluid flow, irreducible water saturation, residual oil saturation and pore-system surface-to-volume ratio, and fast algorithms were developed to give the different NMR parameters. Interest in valid interpretation of data led to extensive work also on the inversion of multiexponential relaxation data and the effects of inhomogeneous fields from susceptibility differences on distributions of relaxation times. In the last few years, extensive developments were made of combined magnetic resonance imaging and relaxation measurements in different fields.  相似文献   

18.
赵明  郁伯铭 《物理学报》2011,60(9):98103-098103
提出了一个描述多孔介质孔隙尺寸分布的三维分形网络模型,利用该模型对多孔介质中的非混溶两相流驱替进行了数值模拟,研究了孔隙尺寸分布分维Df和两相流黏滞比M对驱替前沿指进型的影响,结果表明指进型容量维数Dh随着孔隙尺寸分布分维Df以及黏滞比M的增大而减少,并通过曲线拟合得到了它们之间的定量关系. 关键词: 多孔介质 三维网络 黏滞指进 非混溶两相流  相似文献   

19.
This paper introduces and investigates a simple model of random porous media degradation via several fluid displacing, freezing, and thawing cycles. The fluid transport is based on the deterministic method. The result shows that the topology and the geometry of porous media have a strong effect on displacement processes. The cluster size of the viscous fingering (VF) pattern in the percolation cluster increases with the increase of iteration parameter n. When iteration parameter , the VF pattern does not change with n. When and , the peak value of the distribution increases as n increases; is the normalized distribution of throat sizes after different displacement-damage but before the freezing. The distribution of throat size N(r) after displacement but before freezing damage, shows that the major change, after successive cycles, happens at r>0.9. The peak value of the distribution reaches a maximum when and r=1, where is the normalized distribution of the size of invaded throats for different iterations. This result is different from invasion percolation. The distribution of velocities normal to the interface of VF in the percolation cluster is also studied. When , the scaling function distribution is very sharp. The sweep efficiency E increases along with the increasing of iteration parameter n and decreases with the network size L. And E has a minimum as L increases to the maximum size of the lattice. The VF pattern in the percolation cluster has one frozen zone and one active zone. Received 30 March 1999 and Received in final form 8 August 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号