首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.  相似文献   

2.
Obesity is an excessive accumulation of fat that exacerbates the metabolic and inflammatory processes. Studies associate these processes with conditions and dysregulation in the intestinal tract, increased concentrations of lipopolysaccharides (LPSs) in the blood, differences in the abundance of intestinal microbiota, and the production of secondary metabolites such as short-chain fatty acids. β-Caryophyllene (BCP) is a natural sesquiterpene with anti-inflammatory properties and with the potential purpose of fighting metabolic diseases. A diet-induced obesity model was performed in 16-week-old C57BL/6 mice administered with BCP [50 mg/kg]. A reduction in the expression of Claudin-1 was observed in the group with a high-fat diet (HFD), which was caused by the administration of BCP; besides BCP, the phyla Akkermansia and Bacteroidetes decreased between the groups with a standard diet (STD) vs. HFD. Nevertheless, the use of BCP in the STD increased the expression of these phyla with respect to fatty acids; a similar effect was observed, in the HFD group that had a decreasing concentration that was restored with the use of BCP. The levels of endotoxemia and serum leptin increased in the HFD group, while in the HFD + BCP group, similar values were found to those of the STD group, attributing the ability to reduce these in conditions of obesity.  相似文献   

3.
Recent studies have shown that Nur77 and AMPKα play an important role in regulating adipogenesis and isoalantolactone (ISO) dual-targeting AMPKα and Nur77 inhibits adipogenesis. In this study, we hypothesized that Inula helenium (elecampane) root extract (IHE), which contains two sesquiterpene lactones, alantolactone (ALA) and ISO, as major compounds, might inhibit adipogenesis. Here, we found that ALA and IHE simultaneously target AMPKα and Nur77 and inhibited adipogenic differentiation of 3T3-L1 cells, accompanied by the decreased expression of adipocyte markers. Further mechanistic studies demonstrated that IHE shares similar mechanisms of action with ISO that reduce mitotic clonal expansion during the early phase of adipogenic differentiation and decrease expression of cell cycle regulators. These results suggest that IHE inhibits adipogenesis, in part, through co-regulation of AMPKα and Nur77, and has potential as a therapeutic option for obesity and related metabolic dysfunction.  相似文献   

4.
Obesity is a global health problem that is associated with adverse consequences such as the development of metabolic disorders, including cardiovascular disease, neurodegenerative disorders, and type 2 diabetes. A major cause of obesity is metabolic imbalance, which results from insufficient physical activity and excess energy intake. Understanding the pathogenesis of obesity, as well as other metabolic disorders, is important in the development of methods for prevention and therapy. The coordination of energy balance takes place in the hypothalamus, a major brain region that maintains body homeostasis. The primary cilium is an organelle that has recently received attention because of its role in controlling energy balance in the hypothalamus. Defects in proteins required for ciliary function and formation, both in humans and in mice, have been shown to cause various metabolic disorders. In this review, we provide an overview of the critical functions of primary cilia, particularly in hypothalamic areas, and briefly summarize the studies on the primary roles of cilia in specific neurons relating to metabolic homeostasis.Subject terms: Homeostasis, Hypothalamus  相似文献   

5.
The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer’s disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.  相似文献   

6.
Obesity is a pathological condition, defined as an excessive accumulation of fat, primarily caused by an energy imbalance. The storage of excess energy in the form of triglycerides within the adipocyte leads to lipotoxicity and promotes the phenotypic switch in the M1/M2 macrophage. These changes induce the development of a chronic state of low-grade inflammation, subsequently generating obesity-related complications, commonly known as metabolic syndromes. Over the past decade, obesity has been studied in many animal models. However, due to its competitive aspects and unique characteristics, the use of zebrafish has begun to gain traction in experimental obesity research. To counteract obesity and its related comorbidities, several natural substances have been studied. One of those natural substances reported to have substantial biological effects on obesity are flavonoids. This review summarizes the results of studies that examined the effects of flavonoids on obesity and related diseases and the emergence of zebrafish as a model of diet-induced obesity.  相似文献   

7.
8.
Metabolic syndrome (MetS) is a constellation of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. Analysis and representation of the variances of metabolic profiles is urgently needed for early diagnosis and treatment of MetS. In current study, we proposed a metabolomics approach for analyzing MetS based on GC–MS profiling and random forest models. The serum samples from healthy controls and MetS patients were characterized by GC–MS. Then, random forest (RF) models were used to visually discriminate the serum changes in MetS based on these GC–MS profiles. Simultaneously, some informative metabolites or potential biomarkers were successfully discovered by means of variable importance ranking in random forest models. The metabolites such as 2-hydroxybutyric acid, inositol and d-glucose, were defined as potential biomarkers to diagnose the MetS. These results obtained by proposed method showed that the combining GC–MS profiling with random forest models was a useful approach to analyze metabolites variances and further screen the potential biomarkers for MetS diagnosis.  相似文献   

9.
Obesity is a persistent metabolic condition resulting from the excessive accumulation or abnormal distribution of body fat. This study aimed to establish an experimental rat model of obesity. The efficacy of treating obesity with Hedan tablets (HDT) was assessed by monitoring changes in weight, blood lipid levels, analyzing inflammatory factors, evaluating organ indices, and observing liver tissue pathology. Furthermore, we utilized 16S ribosomal RNA gene sequencing technology to explore changes in intestinal flora. In addition, GC–MS was used to measure fecal short-chain fatty acid (SCFA) content. The onset of obesity led to a significant decrease in the relative abundance of beneficial bacteria. Conversely, the administration of HDT demonstrated a substantial ability to increase the relative abundance of beneficial bacteria. Obesity resulted in a noteworthy reduction in total SCFAs, a trend significantly reversed in the HDT group. Through correlation analysis, it was determined that HDT mitigated the inflammatory response and improved blood lipid levels by augmenting the abundance of Lactobacillus, Limosilactobacillus, Ruminococcus, and Enterococcus. These particular intestinal flora were identified as regulators of SCFA metabolism, thereby ameliorating metabolic abnormalities associated with obesity. Moreover, HDT intervention elevated the overall fecal concentration of SCFAs, thereby improving metabolic disorders induced by obesity. The anti-obesity effects of HDT are likely attributable to their capacity to influence the composition of intestinal flora and boost SCFA levels in the intestine.  相似文献   

10.
11.
近年来,我国儿童肥胖发病率有明显上升趋势,对儿童健康成长造成严重威胁。儿童肥胖与代谢综合征(MS)之间是否存在一定联系,就此方面的研究进展进行综述。  相似文献   

12.
Obesity is a foremost health issue that affects about 1.6 million people out of which 400 million worldwide. Epidemiological evidences prove obesity is the primary cause for various metabolic ailments e.g. diabetes. Poria cocos possess extensive biological actions, for instance, antioxidant, anti-inflammatory, antitumor, immunomodulatory actions. The primary limitation of all phytomedicine was their poor bioavailability hence in this investigation, we bio-fabricated the gold nanoparticles from Poria cocos aqueous extract and inspected their potency to treat obesity. Obese rat model were produced via fed the young female rats with high fat food for 8 weeks regimen. Further to confirm the potency of Poria cocos gold nanoparticles against obesity induced metabolic disorders we treated obese rats with low dose streptozotocin in the conclusion of the investigational time. The synthesis of Poria cocos gold-nanoparticles was evidenced via the UV-Spectroscopic study and characterized with SEM, TEM and EDAX studies. The anti-obesity actions of Poria cocos gold-nanoparticles were investigated by estimating the glucose profile, kidney markers, lipid profile, inflammatory cytokines, adipocyte markers, antioxidants in the Poria cocos gold nanoparticles treated obese rats. To confirm the Poria cocos gold nanoparticles role on inhibiting the obesity induced metabolic disorders we analyzed the histopathological changes in cardiac tissues. Our physical characterization confirms the synthesized Poria cocos gold nanoparticles assure the distinctions of influential nanoparticles to be utilized for the treatment. The results from biochemical and histopathological analysis confirms Poria cocos gold nanoparticles is a persuasive antidiabetic, anti-inflammatory, antioxidant, anti-obesity drug. Overall our results authentically confirm Poria cocos gold nanoparticles is a potent anti-obesity drug and it also protects from obesity induced metabolic disorders.  相似文献   

13.
1H NMR spectroscopy in combination with multivariate statistical analysis was applied to explore the metabolic variability in urine and serum of high fat-fed rats relative to normal chow-fed ones. Metabolites contributing to intergroup discrimination identified by partial least squares discriminant analysis include 3-hydroxybutyrate, glutamate, glutamine, citrate, choline, hippurate, alanine, lactate, creatinine, taurine, acetate, etc. The aging effect along with long-term feeding was delineated with metabolic trajectory in principal component analysis score plot and age-related differences on metabolic profiling under different dietary intervention were recognised. The identified metabolites responsible for obesity were all imported into a web tool for network-based interpretation of compound lists to interpret their functional context, molecular mechanisms and disturbed signalling pathway globally and systematically. The results are useful for interpreting the pathology of obesity and further probing into the relationship between dietary-induced obesity and type 2 diabetes mellitus.  相似文献   

14.
Gel electrophoresis is routinely used to separate and analyse macromolecules in biological systems. Although many of these electrophoretic techniques necessitate the denaturing of the analytes prior to their analysis, blue native polyacrylamide gel electrophoresis (BN-PAGE) permits the investigation of proteins/enzymes and their supramolecular structures such as the metabolon in native form. This attribute renders this analytical tool conducive to deciphering the metabolic perturbations invoked by metal toxicity. In this review, we elaborate on how BN-PAGE has led to the discovery of the dysfunctional metabolic pathways associated with disorders such as Alzheimer’s disease, Parkinson’s disease, and obesity that have been observed as a consequence of exposure to various metal toxicants.  相似文献   

15.
Mitochondrial dysfunction has been associated with diverse pathological conditions globally. Specifically, in adipose tissues, mitochondrial dysfunction is the primary cause of obesity and obesity-related illnesses. An existing drugs such as atorvastatin and other lipid-lowering drugs demonstrated adverse effects and initiated other diseases. Thus, we need to explore new methods to prevent and treat obesity. In this study, we used the cell screening method to identify several natural compounds that increase adipocyte UCP1 gene expression. The identified drug Curcumin was evaluated in cell models and the In-silico model. We found curcumin is an active compound of turmeric belonging to Zingiberaceae (ginger family), which activates the Nrf2 mechanism. Curcumin potentially endorses the expression of UCP1 in the brown adipocyte in vitro cellular model. Curcumin plays an important role that modulating mitochondrial function and improving mitochondrial DNA quantification, ATP production, and cell viability. We have established an efficient in vitro cell experiment system to study the metabolic regulation of UCP1. The in-silico model revealed curcumin-UCP1 interaction. Curcumin, via enhancing mitochondrial activity, could be a helpful therapeutic molecule against metabolic disorders or obesity-related diseases. Curcumin will be the subject of more research in both human and murine models, which will provide novel therapeutic pathways for the treatment of metabolic illnesses by modulating the control of mitochondrial function.  相似文献   

16.
BackgroundMitochondrial plays a vital role in regulating obesity and related comorbidity. Targeting mitochondrial function could be a potent therapeutic approach to inhibit metabolic-related diseases like obesity, liver disease. Prolonged use of existing drug moieties demonstrated severe adverse effects.MethodsWe apply Ucp1-A-GFP immortalized reporter cell lines and HEK293T cell lines to evaluate cell viability, mitochondrial ATP production, and the in-silico model.ResultsWe found Glycyrrhizin, an HMGB1 (high mobility group box 1) inhibitor, plays a significant role in modulating mitochondrial function against obesity. At the cellular level, the adipocytes treated with Glycyrrhizin have increased mitochondrial function. Further analysis shows that compared with the control group, the cells in the treatment group contain more mitochondria. Glycyrrhizin demonstrated a nontoxic effect on the HEK293T cell line, upregulating mitochondrial DNA and reducing mitochondrial ATP production levels. In-silico study exhibited drug-protein interaction and binding side with UCP1.ConclusionGlycyrrhizin improves mitochondrial function that would be an effective drug candidate to treat metabolic diseases and obesity-related diseases. Further investigation will require both the human and animal models to reveal new insight into the mechanism against obesity, metabolic diseases or mitochondrial dysfunction-related diseases.  相似文献   

17.
Breast milk is the optimal food for infants and toddlers, providing basic nutrients. It is also a source of many biologically active substances. Among them are hormones responsible for metabolic balance. One of the hormones taken in with breast milk by a breastfed baby is leptin. This hormone is involved in the regulation of appetite, informing the brain about the body’s energy resources. Having the correct mechanisms related to the action of leptin is a factor reducing the risk of obesity. The natural presence of leptin in the composition of breast milk suggests that it has a specific role in shaping the health of a breastfed child. Obesity as a disease of civilization affects more and more people, including children. The development of this disease is multifaceted and determined by many factors, including genetic and environmental factors such as eating habits and low physical activity. Behind obesity, there are complex mechanisms in which many elements of the human body are involved. Understanding the effects of breastfeeding as a natural source of leptin can help prevent childhood obesity and development of this disease in future life.  相似文献   

18.
People with upper body or visceral obesity have a much higher risk of morbidity and mortality from obesity-related metabolic disorders than those with lower body obesity. In an attempt to develop therapeutic strategies targeting visceral obesity, depot- specific differences in the expression of genes in omental and subcutaneous adipose tissues were investigated by DNA array technology, and their roles in adipocyte differentiation were further examined. We found that levels of metallothionein-II (MT-II) mRNA and protein expression were higher in omental than in subcutaneous adipose tissues. The study demonstrates that MT-II may play an important role in adipocyte differentiation of 3T3L1 preadipocytes, and that N-acetylcysteine (NAC) inhibits the adipocyte differentiation of 3T3L1 cells by repressing MT-II in a time- and dose-dependent manner. Furthermore, the intraperitoneal administration of NAC to rats and mice resulted in a reduction of body weights, and a marked reduction in visceral fat tissues. These results suggest that MT-II plays important roles in adipogenesis, and that NAC may be useful as an anti-obesity drug or supplement.  相似文献   

19.
Leptin receptor deficiency causes morbid obesity and hyperlipidemia in mice. Since physical exercise enhances energy expenditure, it is an important part of successful weight-control regimens. We investigated the mechanism by which swim training regulates leptin receptor deficiency-induced obesity and lipid disorder in a mouse model of obesity (obese db/db mouse). Swim training for 6 weeks significantly decreased body weight gain and adipose tissue mass in both sexes of obese and lean mice, compared to their respective sedentary controls. These effects were particularly evident in obese mice. Swim training also caused significant decreases in serum levels of triglycerides, free fatty acids and total cholesterol in both obese and lean mice. In obese mice, swim training increased the levels of mRNAs and proteins encoding uncoupling protein 1 (UCP1), UCP2 and UCP3 in brown adipose tissue, white adipose tissue and skeletal muscle, respectively. In conclusion, these findings suggest that, in mice, swim training can effectively prevent body weight gain, adiposity and lipid disorders caused by leptin receptor deficiency, in part through activation of UCPs in adipose tissue and skeletal muscle, which may contribute to alleviating metabolic syndromes, such as obesity, hyperlipidemia and type 2 diabetes.  相似文献   

20.
Interest in CBG (cannabigerol) has been growing in the past few years, due to its anti-inflammatory properties and other therapeutic benefits. Here we report the synthesis of three new CBG derivatives (HUM-223, HUM-233 and HUM-234) and show them to possess anti-inflammatory and analgesic properties. In addition, unlike CBG, HUM-234 also prevents obesity in mice fed a high-fat diet (HFD). The metabolic state of the treated mice on HFD is significantly better than that of vehicle-treated mice, and their liver slices show significantly less steatosis than untreated HFD or CBG-treated ones from HFD mice. We believe that HUM-223, HUM-233 and HUM-234 have the potential for development as novel drug candidates for the treatment of inflammatory conditions, and in the case of HUM-234, potentially for obesity where there is a huge unmet need.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号