首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 3 毫秒
1.
Sphingosylphosphorylcholine (SPC) induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle-like cells expressing α-smooth muscle actin (α-SMA) via transforming growth factor-β1/Smad2- and RhoA/Rho kinase-dependent mechanisms. 3-Hydroxy-3-methylglutaryl- coenzyme A reductase inhibitors (statins) have been known to have beneficial effects in the treatment of cardiovascular diseases. In the present study, we examined the effects of simvastatin on the SPC-induced α-SMA expression and Smad2 phosphorylation in hASCs. Simvastatin inhibited the SPC-induced α-SMA expression and sustained phosphorylation of Smad2 in hASCs. SPC treatment caused RhoA activation via a simvastatin-sensitive mechanism. The SPC-induced α-SMA expression and Smad2 phosphorylation were abrogated by pretreatment of the cells with the Rho kinase inhibitor Y27632 or overexpression of a dominant negative RhoA mutant. Furthermore, SPC induced secretion of TGF-β1 and pretreatment with either Y27632 or simvastatin inhibited the SPC-induced TGF-β1 secretion. These results suggest that simvastatin inhibits SPC-induced differentiation of hASCs into smooth muscle cells by attenuating the RhoA/Rho kinase-dependent activation of autocrine TGF-β1/Smad2 signaling pathway.  相似文献   

2.
3.
4.
Advanced glycation endproducts (AGEs)-induced vascular smooth muscle cell (VSMCs) proliferation and formation of reactive oxygen species (ROS) are emerging as one of the important mechanisms of diabetic vasculopathy but little is known about the antioxidative action of HMG CoA reductase inhibitor (statin) on AGEs. We hypothesized that statin might reduce AGEs-induced intracellular ROS of VSMCs and analyzed the possible mechanism of action of statin in AGEs-induced cellular signaling. Aortic smooth muscle cell of Sprague-Dawley rat (RASMC) culture was done using the different levels of AGEs stimulation in the presence or absence of statin. The proliferation of RASMC, ROS formation and cellular signaling was evaluated and neointimal formation after balloon injury in diabetic rats was analyzed. Increasing concentration of AGEs stimulation was associated with increased RASMC proliferation and increased ROS formation and they were decreased with statin in a dose-dependent manner. Increased NF-κB p65, phosphorylated ERK, phosphorylated p38 MAPK, cyclooxygenase-2, and c-jun by AGEs stimulation were noted and their expression was inhibited by statin. Neointimal formation after balloon injury was much thicker in diabetic rats than the sham-treated group but less neointimal growth was observed in those treated with statin after balloon injury. Increased ROS formation, subsequent activation of MAPK system and increased VSMC proliferation may be possible mechanisms of diabetic vasculopathy induced by AGEs and statin may play a key role in the treatment of AGEs-induced diabetic atherosclerosis.  相似文献   

5.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号