首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Predicting the therapeutic outcome of photodynamic therapy (PDT) requires knowledge of the amount of cytoxic species generated. An implicit approach to assessing PDT efficacy has been proposed where changes in photosensitizer (PS) fluorescence during treatment are used to predict treatment outcome. To investigate this, in vitro experiments were performed in which Mat-LyLu cells were incubated in meta-tetra(hydroxyphenyl)chlorin (mTHPC) and then irradiated with 652 nm light. PS concentration, fluence rate and oxygenation were independently controlled and monitored during the treatment. Fluorescence of mTHPC was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony-formation assay. Singlet oxygen dose was calculated using four different models and was compared with cell survival. For the dose metric based on singlet oxygen-mediated PS photobleaching, a universal relationship between cell survival and singlet oxygen dose was found for all treatment parameters. Analysis of the concentration dependence of bleaching suggests that the lifetime of singlet oxygen within the cell is 0.05-0.25 micros. Generation of about 9 x 10(8) molecules of singlet oxygen per cell reduces the surviving fraction by 1/e.  相似文献   

2.
The pharmacokinetics of the photosensitizer used play a key role in the understanding of the mechanism of photodynamic therapy-induced damage. Fluorescence microscopy was used to compare time-dependent biodistribution of tetra(m-hydroxyphenyl)chlorin (mTHPC) and benzoporphyrin derivative monoacid ring A (BPD-MA) in different hamster tissues, including an early, chemically induced, squamous cell carcinoma. Following injection of 0.5 mg/kg body weight of mTHPC and 2.0 mg/kg BPD-MA, groups of three animals were sacrificed at different time points and a series of fluorescence micrographs from different excised organs were analyzed. The highest fluorescence intensities of mTHPC were observed at 96 h for squamous epithelia and skin and at 48 h for smooth muscle. There is no real peak of BPD-MA fluorescence between 30 min and 3 h in the basal epithelial layers, fibroconnective tissue, muscles or blood vessels. At 4 h after injection, the fluorescence level of BPD-MA decreased and at 24 h it had returned to background level in all observed tissues. The significantly faster clearance of BPD-MA is the principal advantage as compared to mTHPC. However, similar localization patterns in different tissues with essentially vascular affinity represent a possible disadvantage for treating early malignancies with BPD-MA as compared to mTHPC, which is mainly localized in various epithelia. For both photosensitizers no significant selectivity between early squamous cell carcinoma and healthy mucosae is seen. Pharmacokinetic studies of different photosensitizers in an appropriate animal model are essential for selecting new-generation photosensitizers with the most favorable localization for photodynamic therapy of early malignancies in hollow organs.  相似文献   

3.
Absorption, fluorescence and laser flash photolysis spectroscopies were used to investigate the effects of self-aggregation, binding to human serum albumin and incorporation in cancer cells on the photophysics of benzoporphyrin derivative monoacid ring A (BPDMA). Aggregation of BPDMA has been studied in mixtures of methanol and phosphate-buffered saline (PBS). The extent of aggregation was dependent on dye concentration and solvent composition, becoming particularly marked in mixtures containing less than 30% methanol. A dimerization constant Kd or 9 × 106 M−1 was determined by fluorescence experiments for BPDMA in pure PBS. In addition to spectral modifications, aggregation induces a lowering of the fluorescence and intersystem crossing quantum yields. Human serum albumin binds BPDMA with an association constant Kb of 5.2 × 105 M−1 in PBS. When bound to HSA, BPDMA displays photophysical properties very similar to the monomer in organic solvents. The molar ratio [HSA]/[BPDMA] corresponding to complete binding of the dye was determined to be approximately 10. Efficient generation of the triplet state of BPDMA was also observed from aqueous cellular suspensions containing incorporated photosensitizer.  相似文献   

4.
4,4'(5')-Bis[2-(9-anthryloxy)ethylthio]tetrathiafulvalene bearing an electron-rich tetrathiafulvalene unit and a luminophore of anthracene shows a highly selective and sensitive chemiluminescence response to singlet oxygen.  相似文献   

5.
Pyridoxine reaction with (1)O(2) in aqueous solution at neutral pH resulted in oxidation at the 2- and 6-positions of the pyridine ring and unprecedented ring contraction. Kinetic and low temperature studies provided observable intermediates by NMR spectroscopy. In addition, novel cycloaddition between pyridoxine and N-methylmaleimide, without N-alkylation and in water, suggest a common [3 + 2] cycloaddition with the 3-hydroxypyridine ring.  相似文献   

6.
We revealed that in ATX-S10.Na(II)(13,17-bis (1-carboxypropionyl) carbamoylethyl-8-etheny-2-hydroxy-3-hydroxyiminoethylidene-2,7,12,18-tetraethyl porphyrin sodium)-mediated photodynamic therapy using 667 nm nanosecond-pulsed light excitation at a peak intensity of 2.0 MW/cm(2), phototoxicity increased with decreasing pulse repetition rate in the range of 5-30 Hz for A549 cell cultures. To examine the relation between the reaction mechanism and measured phototoxicity, we carefully measured the kinetics of photochemical oxygen consumption and photobleaching during irradiation of ATX-S10.Na(II)-sensitized A549 monolayer cultures. Measurements of oxygen consumption with a microelectrode, which was performed just above the cells, showed that there was no significant difference between the magnitudes of decrease in oxygen at the three repetition rates at the same cumulative fluence. Loss of ATX-S10.Na(II) fluorescence intensity also exhibited little repetition rate dependence when compared at the same cumulative fluence. We investigated the correlation between oxygen consumption and photobleaching during irradiation and obtained "fluorescence-oxygen diagrams." The diagrams showed dynamic changes between oxygen-dependent and oxygen-independent photobleaching at the higher repetition rates of 10 and 30 Hz, whereas such change was not clearly seen over the whole irradiation time at 5 Hz. These results suggest that the reduced phototoxicity at high repetition rates might be due to an oxygen-independent reaction. We presumed that the change in the reaction mechanism was associated with the local concentrations of the photosensitizer and oxygen in cells during irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号