首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A neutral Dirac fermion ψ   with a nonzero magnetic dipole moment is supplied as a singlet within the context of the standard model and is considered as a dark matter candidate near the electroweak scale (10–1000 GeV101000 GeV). We discuss its dynamics with the ordinary matters through the magnetic dipole moment. The magnetic dipole moment constrained by the relic abundance may be as large as 10−1810−17e⋅cm10181017ecm. We show that the elastic scattering is due to a spin–spin interaction for the direct detections and the predictions are under experimental exclusion limits of the current direct detectors, XENON10 and CDMS II, and consider the possibility of dark matter detection in the future.  相似文献   

2.
A. Kostelecky et al. [Phys. Rev. Lett. 100 (2008) 111102], have shown that there is an exceptional sensitivity of spacetime torsion components by coupling it to fermions and constraining it to Lorentz violation. They obtain new constraints on torsion components down to the level of 10−31 GeV1031 GeV. Yet more recently, L.C. Garcia de Andrade [Phys. Lett. B 468 (2011) 28] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear non-standard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. In this paper bounds are placed on torsion based on the magnetogenesis or the origin of magnetic fields in the universe. On a coherence scale of 10 kpc, galactic magnetic fields of the order of some μG yield a torsion primordial field of the order of K010−48 GeVK01048 GeV. Just to give an idea of how tiny it is we mention that torsion limit in the Early universe yield K010−31 GeVK01031 GeV had been obtained by V. de Sabbata and C. Sivaram. Good limits were also obtained by B.R. Heckel et al. [Phys. Rev. D 78 (2008) 092006]. In our case the advantage from astro-particle physics point of view, is that a very small seed torsion field is enough to seed galactic dynamo. C. Sivaram limit is obtained from a massive photon electrodynamics [L.C. Garcia de Andrade, C. Sivaram, Ap. Space Sci. 209 (1993) 109] where a gauge invariant electrodynamics is used. Dynamo stars data are able to raise this value of torsion up to 10−34 GeV1034 GeV at magnetar atmosphere. From these estimates one notices that they coincide with the ones obtained by A. Kostelecky et al., the difference being basically in the method. The ones here were obtained from magnetogenesis data while theirs were obtained from the Earth laboratory data from polarised electrons. Besides here one used the torsion derivatives while A. Kostelecky et al. uses the constant axial torsion tensor. Another fundamental distinction is that we use bosonic sector of the Lagrangian while they use mainly fermionic sector coupling with torsion.  相似文献   

3.
4.
Using numerical simulations of quenched SU(2)SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged ρ   mesons if the strength of the magnetic field exceeds the critical value eBc=0.927(77) GeV2eBc=0.927(77) GeV2 or Bc=(1.56±0.13)⋅1016 TeslaBc=(1.56±0.13)1016 Tesla. The condensation of the charged ρ mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.  相似文献   

5.
Using the Closed Time Path (CTP) approach, we perform a systematic leading order calculation of the relaxation rate of flavour correlations of left-handed Standard Model leptons. This quantity is of pivotal relevance for flavoured leptogenesis in the Early Universe, and we find it to be 5.19×10−3T5.19×103T at T=107 GeVT=107 GeV and 4.83×10−3T4.83×103T at T=1013 GeVT=1013 GeV, in substantial agreement with estimates used in previous phenomenological analyses. These values apply to the Standard Model with a Higgs-boson mass of 125 GeV125 GeV. The dependence of the numerical coefficient on the temperature T is due to the renormalisation group running. The leading linear and logarithmic dependencies of the flavour relaxation rate on the gauge and top-quark couplings are extracted, such that the results presented in this work can readily be applied to extensions of the Standard Model. We also derive the production rate of light (compared to the temperature) sterile right-handed neutrinos, a calculation that relies on the same methods. We confirm most details of earlier results, but find a substantially larger contribution from the t-channel exchange of fermions.  相似文献   

6.
We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10° around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25° and 10° from the Galactic Center is well described by the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25° (∼175 parsecs) of the Galactic Center, in contrast, departs from the expectations for by these processes. Instead, we find an additional component of gamma ray emission that is highly concentrated around the Galactic Center. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution (ρ∝r−γρrγ, with γ=1.18γ=1.18 to 1.33). The observed spectrum of this component, which peaks at energies between 1–4 GeV (in E2E2 units), can be well fit by a 7–10 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of 〈σv〉=4.6×10−27σv=4.6×1027 to 5.3×10−26 cm3/s5.3×1026 cm3/s, depending on how the dark matter distribution is normalized. We also discuss other sources for this emission, including the possibility that much of it originates from the Milky Way?s supermassive black hole.  相似文献   

7.
8.
We study in this Letter the double beta decay of 136Xe with emission of two neutrinos which has been recently measured by the EXO-200 Collaboration. We use the same shell model framework, valence space, and effective interaction that we have already employed in our calculation of the nuclear matrix element (NME) of its neutrinoless double beta decay. Using the quenching factor of the Gamow–Teller operator which is needed to reproduce the very recent high resolution 136Xe (3He, t) 136Cs data, we obtain a nuclear matrix element M=0.025 MeV−1M2ν=0.025 MeV1 compared with the experimental value M=0.019(2) MeV−1M2ν=0.019(2) MeV1.  相似文献   

9.
A search for solar axions has been performed using an axion helioscope which is equipped with a 2.3-m long 4 T superconducting magnet, a gas container to hold dispersion-matching gas, PIN-photodiode X-ray detectors, and a telescope mount mechanism to track the sun. A mass region around ma=1 eVma=1 eV was newly explored. From the absence of any evidence, analysis sets a limit on axion–photon coupling constant to be gaγγ<5.6–13.4×10−10 GeV−1gaγγ<5.613.4×10−10 GeV−1 for the axion mass of 0.84<ma<1.00 eV0.84<ma<1.00 eV at 95% confidence level. It is the first result to search for the axion in the gaγγ–magaγγma parameter region of the preferred axion models with a magnetic helioscope.  相似文献   

10.
11.
We derived the thermodynamic curvature of the Ising model on a kagome lattice under the presence of an external magnetic field. The curvature was found to have a singularity at the critical point. We focused on the zero field case to derive thermodynamic curvature and its components near the criticality. According to standard scaling, scalar curvature R   behaves as |β−βc|α−2|ββc|α2 for α>0α>0 where β is the inverse temperature and α is the critical exponent of specific heat. In the model considered here in which α is zero, we found that R   behaves as |β−βc|α−1|ββc|α1.  相似文献   

12.
13.
We study anomalous kinetics associated with incomplete mixing for a bimolecular irreversible kinetic reaction where the underlying transport of reactants is governed by a fractional dispersion equation. As has been previously shown, we demonstrate that at late times incomplete mixing effects dominate and the decay of reactants follows a fundamentally different scaling comparing to the idealized well mixed case. We do so in a fully analytical manner using moment equations. In particular the novel aspect of this work is that we focus on the role that the initial correlation structure of the distribution of reactants plays on the late time scalings. We focus on short range and long (power law) range correlations and demonstrate how long range correlations can give rise to different late time scalings than one would expect purely from the underlying transport model. For the short range correlations the late time scalings deviate from the well mixed t−1t1 and scale like t−1/2αt1/2α, where 1<α≤21<α2 is the fractional dispersion exponent, in agreement with previous studies. For the long range correlation case it scales like t−β/2αtβ/2α, where 0<β<10<β<1 is the power law correlation exponent.  相似文献   

14.
15.
Several models of dark matter motivate the concept of hidden sectors consisting of SU(3)C×SU(2)L×U(1)YSU(3)C×SU(2)L×U(1)Y singlet fields. The interaction between our and hidden matter could be transmitted by new abelian U(1)U(1) gauge bosons AA mixing with ordinary photons. If such AA?s with the mass in the sub-GeV range exist, they would be produced through mixing with photons emitted in decays of η   and ηη neutral mesons generated by the high energy proton beam in a neutrino target. The AA?s would then penetrate the downstream shielding and be observed in a neutrino detector via their A→e+eAe+e decays. Using bounds from the CHARM neutrino experiment at CERN that searched for an excess of e+ee+e pairs from heavy neutrino decays, the area excluding the γ−AγA mixing range 10−7???10−4107???104 for the AA mass region 1?MA?500 MeV1?MA?500 MeV is derived. The obtained results are also used to constrain models, where a new gauge boson X   interacts with quarks and leptons. New upper limits on the branching ratio as small as Br(η→γX)?10−14Br(ηγX)?1014 and Br(η→γX)?10−12Br(ηγX)?1012 are obtained, which are several orders of magnitude more restrictive than the previous bounds from the Crystal Barrel experiment.  相似文献   

16.
We investigate the possibility of embedding the vector curvaton paradigm in D-brane models of inflation in type IIB string theory in a simple toy model. The vector curvaton is identified with the U(1)U(1) gauge field that lives on the world volume of a D3-brane, which may be stationary or undergoing general motion in the internal space. The dilaton is considered as a spectator field which modulates the evolution of the vector field. In this set-up, the vector curvaton is able to generate measurable statistical anisotropy in the spectrum and bispectrum of the curvature perturbation assuming that the dilaton evolves as e−?∝a2e?a2 where a(t)a(t) is the scale factor. Our work constitutes a first step towards exploring how such distinctive features may arise from the presence of several light fields that naturally appear in string theory models of cosmology.  相似文献   

17.
We show that non-Hermitian and nearest-neighbor-interacting perturbations to the Fritzsch textures of lepton and quark mass matrices can make both of them fit current experimental data very well. In particular, we obtain θ23?45°θ23?45° for the atmospheric neutrino mixing angle and predict θ13?3°θ13?3° to 6° for the smallest neutrino mixing angle when the perturbations in the lepton sector are at the 20% level. The same level of perturbations is required in the quark sector, where the Jarlskog invariant of CP violation is about 3.7×10−53.7×105. In comparison, the strength of leptonic CP violation is possible to reach about 1.5×10−21.5×102 in neutrino oscillations.  相似文献   

18.
We study the hypothesis that the bosons are composite systems, which have a size of the order of 10−17 cm1017 cm. The electromagnetic self-energies of the weak bosons lead to specific departures from the standard elektroweak model, in agreement with observation. Above the energy of 1 TeV the standard electroweak model breaks down completely.  相似文献   

19.
20.
Accurate calculations for the ground state of the molecular ions He3+2 and HeH2+ placed in a strong magnetic field B?102 a.u.B?102 a.u. (≈2.35×1011 G2.35×1011 G) using the Lagrange-mesh method are presented. The Born–Oppenheimer approximation of zero order (infinitely massive centers) and the parallel configuration (molecular axis parallel to the magnetic field) are considered. Total energies are found with 9–10 s.d. The obtained results show that the molecular ions He3+2 and HeH2+ exist at B>100 a.u.B>100 a.u. and B>1000 a.u.B>1000 a.u., respectively, as predicted in Turbiner and López Vieyra (2007) [1] while a saddle point in the potential curve appears for the first time at B∼80 a.u.B80 a.u. and B∼740 a.u.B740 a.u., respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号