共查询到20条相似文献,搜索用时 7 毫秒
1.
Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice 下载免费PDF全文
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. 相似文献
2.
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems. 相似文献
3.
Mehmet Erta? Bayram DevirenMustafa Keskin 《Journal of magnetism and magnetic materials》2012,324(5):704-710
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F2) and three coexistence or mixed phase regions, namely the F2+P, F1+P and F2+F1+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. 相似文献
4.
The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. 相似文献
5.
The dynamic behavior of a mixed spin-1 and spin-2 Ising system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=2. The Hamiltonian model includes intersublattice, intrasublattice and crystal-field interactions. The set of mean-field dynamic equations is obtained by employing the Glauber transition rates. Firstly, we study time variations of the average sublattice magnetizations in order to find the phases in the system, and the thermal behavior of the average sublattice magnetizations in a period or the dynamic sublattice magnetizations to obtain the dynamic phase transition points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the dynamic total magnetization as a function of the temperature is investigated to find the dynamic compensation points as well as determine the type of behavior. We also present the dynamic phase diagrams for both presence and absence of the dynamic compensation temperatures in the nine different planes. According to the values of Hamiltonian parameters, besides the paramagnetic (p), antiferromagnetic (af), ferrimagnetic (i) and non-magnetic (nm) fundamental phases, eight different mixed phases and the compensation temperature or L- and N-types behavior in the Néel classification nomenclature exist in the system. 相似文献
6.
Based on the mean-field theory and Glauber-type stochastic dynamics, the dynamic hysteresis loops (DHLs) of the spin-2 Ising model are studied on the bilayer square lattice. The DHLs are given for different values of temperature, crystal-field, exchange interaction and oscillating field frequency. It is found that the physical parameters have a strong effect on the shape and number of the DHLs. The results are compared with some theoretical and experimental works and found in a qualitatively good agreement. 相似文献
7.
We extend the recent paper [W. Jiang, V-C. Lo, B-D. Bai, J. Yang, Physica A 389 (2010) 2227-2233] to present a study, within a mean-field approach, the dynamic magnetic properties of the mixed spin-2 and spin-5/2 Ising ferrimagnetic system, which corresponds the molecular-based magnetic materials AFeIIFeIII(C2O4)3 [ A=N(n-CnH2n+1)4, n=3-5], by using the Glauber-type stochastic dynamics. This mixed Ising ferrimagnetic system is used on a layered honeycomb lattice in which FeII (S=5/2) and FeIII (σ=2) occupy sites. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first-or second-order) phase transitions. We also present the dynamic phase diagrams and study the dynamic magnetic hysteresis loop behaviors of the kinetic mixed spin-2 and spin-5/2 Ising ferrimagnetic system. The results are compared with some experimental and theoretical works and a good overall agreement is found. 相似文献
8.
The nature (time variation) of response magnetizations m(wt) of the kinetic cylindrical Ising nanotube in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We have determined the time variations of m(wt) and h(wt) for various temperatures, and investigated the dynamic magnetic hysteresis behavior. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as to obtain the dynamic phase transition temperatures. We also present the dynamic phase diagrams in the three different planes and compare the results of the equilibrium and nonequilibrium states. The phase diagrams exhibit dynamic tricritical, isolated critical, multicritical and triple points. The results are in good agreement with some experimental and theoretical results. 相似文献
9.
The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical (•), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. 相似文献
10.
We calculate the dynamic phase transition (DPT) temperatures and present the dynamic phase diagrams in the kinetic mixed spin-1/2 and spin-5/2 Ising model under the presence of a time-dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the set of mean-field dynamic equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The DPT points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain four fundamental phases and three coexistence or mixed phases, which strongly depend on interaction parameters. The phase diagrams are discussed and a comparison is made with the results of the other mixed spin Ising systems. 相似文献
11.
Mehmet Erta?Mustafa Keskin Bayram Deviren 《Journal of magnetism and magnetic materials》2012,324(8):1503-1511
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h0/zJ) and (T/zJ, D/zJ), where T absolute temperature, h0, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). 相似文献
12.
Behiye Boyarbay Kantar 《哲学杂志》2018,98(30):2734-2748
In the present study, we examine by comparison the dynamic magnetic and hysteretic properties of nanostructures with different magnetic core/shell particles confined within a shape structure of the wire. The model of nanostructures with core?=?spin-1 and shell?=?spin-3/2, namely cylindrical, cubic and hexagonal nanowire, is proposed for studying the effect of the geometry of wire shape on the magnetic and hysteretic properties. The results were obtained by mean-field theory as well as Glauber-type stochastic dynamics, and focused the response to thermal and hysteretic behaviours of systems. All results display dynamic magnetic properties of the nanostructure strongly dependent on the geometry of wire shape. Moreover, temperature and crystal field are proposed as the important factors affecting the dynamic properties of wire systems. 相似文献
13.
By utilizing the effective-field theory based on the Glauber-type stochastic dynamics, the dynamic behaviors of the hexagonal Ising nanowire (HIN) system in the presence of a time dependent magnetic field are obtained. The time variations of average order parameters and the thermal behavior of the dynamic order parameters are studied to analyze the nature of transitions and to obtain the dynamic phase transition points. The dynamic phase diagrams are introduced in the plane of the reduced temperature versus magnetic field amplitude. The dynamic phase diagrams exhibit coexistence phase region, several ordered phases and critical point as well as a reentrant behavior. 相似文献
14.
Ersin Kantar 《Phase Transitions》2018,91(4):370-381
We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found. 相似文献
15.
As a continuation of our previously published work, the dynamic phase transitions are studied further, within a mean-field approach, in the kinetic Blume--Emery--Griffiths model in the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different planes, namely in the reduced temperature (T) and biquadratic interaction (k) plane and found eight fundamental types of phase diagrams for various values of reduced crystal-field interaction (d) and magnetic field amplitude (h), and in the (T,?d) plane and obtained six distinct topologies for different values of k and h. Phase diagrams exhibit one or two dynamic tricritical points and a dynamic double critical end point, dynamic triple and quadruple points, and besides disordered and ordered phases, three coexistence phase regions exist in which occurring of these strongly depend on the values of d, k and h. 相似文献
16.
Ersin Kantar 《Phase Transitions》2016,89(10):971-985
We study some dynamic properties of the bilayer honeycomb lattice with AB stacking geometry in the presence of a time-dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. First, we obtain dynamic phases in the system and observe the paramagnetic (p), ferromagnetic (f), compensated (c) antiferromagnetic (af), surface ferromagnetic (sf) and mixed (m) phases. Besides, coexistence phase regions also exist in the system. Second, we investigate the thermal behavior of the dynamic order parameters. From these study, the natures (first- or second-order) of the transitions are characterized and the dynamic phase transition (DPT) points are presented. The DPTs are obtained and the dynamic phase diagrams (DPD) are constructed plane of the temperature versus the amplitude of the magnetic field. We investigate the effect of the frequency of the oscillating external magnetic field on the DPD. 相似文献
17.
We study the Landau states in the biased AA-stacked graphene bilayer under an exponentially decaying magnetic field along one spatial dimension. The results show that the energy eigenvalues of the system are strongly dependent on the inhomogeneity of the magnetic field and the bias voltage between the graphene layers, and in particular the reordering and mixing of finite Landau states could occur. Moreover, we also demonstrate that the current carrying states induced by the decaying magnetic field propagate vertically to the magnetic-field gradient within the graphene sample and can be further modulated by the bias voltage between the layers. 相似文献
18.
《Physics letters. A》2014,378(30-31):2295-2296
19.
Mainak Sadhukhan 《Molecular physics》2013,111(23):3490-3507
Following the time-dependent quantum fluid density functional theory developed in our laboratory, the present quantum-mechanical, dynamical study of the H2 molecule under strong, oscillating magnetic fields reveals a coexistence of both slow and fast dynamics, as seen earlier in the cases of hydrogen and helium atoms. Using the Deb–Chattaraj equation of motion we find that, contrary to the situation with static magnetic fields, the electron density now transiently expands. Consequently, the fate of the H–H bond under such strong TD magnetic fields has been addressed through detailed and accurate TD density profiles computed by direct numerical solution of the real-time evolution equation. A detailed interpretation of the slow dynamics has been made. 相似文献