首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the current status of the neutrino mass and mixing parameters needed to reconstruct the neutrino mass matrix. A comparative study of the precision in the measurement of oscillation parameters expected from the next-generation solar, atmospheric, reactor-and accelerator-based neutrino experiments is presented. We discuss the potential of 0νββ experiments in determining the neutrino mass hierarchy and the importance of a better ϑ 12 measurement for it. The text was submitted by the author in English.  相似文献   

2.
We discuss the CP violation in long base line neutrino oscillation experiments. The direct measurement of CP violation is the difference of transitions probability between CP conjugate channels. The sign of Δ 31 is not yet determined, we assume two mass hierarchy conditions, normal (Δ 31>0) and inverted (Δ 31<0). In this paper, we study the CP violation and neutrino mass hierarchy effect in vacuum and matter for long baseline BNL experiments. By an appropriate chose of experimental parameter, neutrino energy and traveled distance. We find that, in matter normal mass hierarchy en-chanced maximum CP violation over their invert mass hierarchy value by 12 %.  相似文献   

3.
《Physics letters. [Part B]》2001,504(4):301-308
We discuss the flavor conversion of supernova neutrinos in the three-flavor mixing scheme of neutrinos. We point out that by neutrino observation from supernova one can discriminate the inverted hierarchy of neutrino masses from the normal one if s132≳a few×10−4, irrespective of which oscillation solution to the solar neutrino problem is realized in nature. We perform an analysis of data of SN1987A and obtain a strong indication that the inverted mass hierarchy is disfavored unless s132≲a few×10−4.  相似文献   

4.
We study the Zee–Babu two-loop neutrino mass generation model and look for a possible flavor symmetry behind the tri-bimaximal neutrino mixing. We find that there probably exists the μτ   symmetry in the case of the normal neutrino mass hierarchy, whereas there may not be in the inverted hierarchy case. We also propose a specific model based on a Froggatt–Nielsen-like Z5Z5 symmetry to naturally accomplish the μτ symmetry on the neutrino mass matrix for the normal hierarchy case.  相似文献   

5.
We investigate non-standard neutrino interactions (NSIs) in the Zee–Babu model. The size of NSIs predicted by this model is obtained from a full scan over the parameter space, taking into account constraints from low-energy experiments such as searches for lepton flavor violation (LFV) and the requirement to obtain a viable neutrino mass matrix. The dependence on the scale of new physics as well as on the type of the neutrino mass hierarchy is discussed. We find that NSIs at the source of a future neutrino factory may be at an observable level in the νeντ and/or νμντ channels. In particular, if the doubly charged scalar of the model has a mass in reach of the LHC and if the neutrino mass hierarchy is inverted, a highly predictive scenario is obtained with observable signals at the LHC, in upcoming neutrino oscillation experiments, in LFV processes, and for NSIs at a neutrino factory.  相似文献   

6.
The physics potential of GENIUS, a recently proposed double beta decay and dark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10?(2–3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10-3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the νe ? νμ hypothesis of the atmospheric neutrino problem. GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for the first time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics.  相似文献   

7.
The paper treats recent experiments measuring the endpoint region of tritium β-decay with high resolution, sensitivity and background rejection, using an electrostatic filter with adiabatic magnetic collimation. The spectra are analysed with respect to the neutrino mass. These results form the primary source for the present upper limit of the neutrino mass m ν ?<?2 eV quoted by the particle data group. Particular attention is paid to the decisive influence which atomic and molecular physics effects take on the results. A brief outlook on future experiments is given.  相似文献   

8.
Starting from a complete set of possible parametrisations of the quark-mass matrices that have the maximum number of texture zeros at the grand unification scale, and the Georgi-Jarlskog mass relations, we classify the neutrino spectra with respect to the unknown structure of the heavy Majorana sector. The results can be casted into a small number of phenomenologically distinct classes of neutrino spectra, characterised by universal mass-hierarchy and oscillation patterns. One finds that the neutrino masses reflect the natural hierarchy among the three generations and obey the quadratic seesaw, for most GUT models that contain a rather “unsophisticated” Majorana sector. A scenario withv τ as the missing hot dark matter component andv e ?v µ oscillations accounting for the solar neutrino deficit comes naturally out of this type of models and is very close to the experimental limit of confirmation or exclusion. In contrast, in the presence of a strong hierarchy of heavy scales or/and some extra symmetries in the Majorana mass matrix, this natural hierarchy gets distorted or even reversed. This fact can become a link between searches for neutrino oscillations and searches for discrete symmetries close to the Planck scale.  相似文献   

9.
C. Brofferio 《Pramana》2010,75(2):271-280
The renewed interest shown in these days towards neutrinoless double beta decay, a lepton number violating process which can take place only if neutrinos are Majorana particles (ν = \(\bar \nu \)) with a nonvanishing mass, is justified by the fact that the Majorana nature of neutrinos is expected in many theories beyond the Standard Model. We also now know, thanks to the neutrino oscillation experiments, that neutrinos are in fact massive, as expected in these theories and not requested in the Standard Model. Moreover, since neutrino oscillation experiments measure only the absolute value of the difference of the square of the neutrino masses, the discovery of neutrinoless double beta decay would help to disentangle questions that still remain unsolved: what is the absolute mass scale of the neutrinos and which mass hierarchy (normal, inverted or quasi-degenerate) is the correct one?The scope of this paper is not only to review the present results reached in the field by the different groups and technologies worldwide, but also to illustrate and comment on the (near and long-term) future strategies that experimentalists are trying to pursue to reach the needed sensitivity required to explore the inverted hierarchy neutrino mass scale.  相似文献   

10.
In this paper, we carry out a numerical and systematic analysis of the neutrino mass textures, which contain one vanishing minor and equality between two cofactors. Among 60 logically possible textures, only eight of them are excluded for both the normal and inverted hierarchy by the current experimental data at 3σ level. We also demonstrate that the future long-baseline neutrino oscillation experiments, especially for the measurement of the θ 23 mixing angle, will play an important role in the model selection. The phenomenological implications from neutrinoless double-beta decay and the cosmology observation are also examined. A discussion of the flavor symmetry realization of the textures is also given.  相似文献   

11.
We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S 4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle θ 12 depends on tanb\tan\beta and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on θ 12 in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large tanb\tan\beta. The evolution of light-neutrino masses is approximately described by a common scaling factor.  相似文献   

12.
The recent results on neutrino oscillations and the consequent need to measure the value of the neutrino mass are briefly discussed. The operating principle of cryogenic detectors working at low temperatures, where the small heat capacity allows one to record and measure the temperature increase due to the tiny energy lost by a particle in form of heat is described. An application of these detectors is the measurement, or at least an upper constraint, of the neutrino mass in β decay. This approach is complementary and can, in the future, be competitive with experiments based on the spectrometric measurement of the electron energy. The search for neutrinoless double beta decay could reach a better sensitivity on the mass if a neutrino is a Majorana particle. A large cryogenic detector, named CUORICINO, on neutrinoless double beta decay (DBD) of 130Te already yields the best constraint on the absolute value of the Majorana neutrino mass. A much larger detector, named CUORE, for Cryogenic Underground Observatory for Rare Events, is currently under construction. With its active mass of 750 kg of natural TeO2 it aims to reach the sensitivity in the determination of the Majorana neutrino mass suggested by the results of neutrino oscillation under the inverse hierarchy hypothesis. The problem is closely connected with what I call “the second mystery of Ettore Majorana” who suggested a particle that would violate the lepton number.  相似文献   

13.
To address the issue of whether tri-bimaximal mixing (TBM) is a softly-broken hidden or an accidental symmetry, we adopt a model-independent analysis in which we perturb a neutrino mass matrix leading to TBM in the most general way but leave the three texture zeros of the diagonal charged lepton mass matrix unperturbed. We compare predictions for the perturbed neutrino TBM parameters with those obtained from typical SO(10) grand unified theories with a variety of flavor symmetries. Whereas SO(10) GUTs almost always predict a normal mass hierarchy for the light neutrinos, TBM has a priori no preference for neutrino masses. We find, in particular for the latter, that the value of |Ue3| is very sensitive to the neutrino mass scale and ordering. Observation of |Ue3|2>0.001 to 0.01 within the next few years would be incompatible with softly-broken TBM and a normal mass hierarchy and would suggest that the apparent TBM symmetry is an accidental symmetry instead. No such conclusions can be drawn for the inverted and quasi-degenerate hierarchy spectra.  相似文献   

14.
The recent global analysis of three-flavor neutrino oscillation data indicates that the normal neutrino mass ordering is favored over the inverted one at the 3σ level, and the best-fit values of the largest neutrino mixing angle θ_(23) and the Dirac CP-violating phase δ are located in the higher octant and third quadrant, respectively. We show that all these important issues can be naturally explained by the μ-τ reflection symmetry breaking of massive neutrinos from a superhigh energy scale down to the electroweak scale owing to the one-loop renormalization-group equations(RGEs) in the minimal supersymmetric standard model(MSSM). The complete parameter space is explored for the first time in both the Majorana and Dirac cases, by allowing the smallest neutrino mass m1 and the MSSM parameter tanβ to vary within their reasonable regions.  相似文献   

15.
We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova nu(e) and nu(mu,tau) energy spectra below (above) energy E(C) for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, E(C) decreases as the assumed effective 2x2 vacuum nu(e)<==>nu(mu,tau) mixing angle (approximately theta13) is decreased. In contrast, these calculations indicate that E(C) is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if theta13 is too small to be measured by terrestrial neutrino oscillation experiments.  相似文献   

16.
In an attempt to uncover any underlying structure in the neutrino mass matrix, we discuss the possibility that the ratios of elements of its Majorana mass matrix are equal. We call this “strong scaling Ansatz” for neutrino masses and study its phenomenological implications. Of three possible independent scale invariant possibilities, only one is allowed by current data, predicting in a novel way the vanishing of Ue3Ue3 and an inverted hierarchy with the lightest neutrino having zero mass. The Ansatz has the additional virtue that it is not affected by renormalization running. We also discuss explicit models in which the scaling Ansatz is realized.  相似文献   

17.
We present effective Majorana neutrino mass limits <m ββ> obtained from the joint analysis of the recently published results of 76Ge and 136Xe neutrinoless double beta decay (0νββ) experiments, which was carried out by using the Bayesian calculations. Nuclear matrix elements (NMEs) used for the analysis are taken from the works, in which NMEs of 76Ge and 136Xe were simultaneously calculated. This reduced systematic errors connected with NME calculation techniques. The new effective Majorana neutrino mass limits <m ββ> less than [85.4–197.0] meV are much closer to the inverse neutrino mass hierarchy region.  相似文献   

18.
NOνA is a long-baseline neutrino experiment designed to study ν μ →ν e and $\overline \nu_{\mu} \to \overline \nu_e $ oscillations. It will measure the neutrino mixing angles θ 13 and θ 23 with high precision, probe the neutrino mass hierarchy, and search for CP violation in neutrino oscillations. The experiment consists of two detectors. The Near Detector will be located at Fermilab close to the source of the neutrino beam. The Far Detector is being built at Ash River in northern Minnesota. It is positioned 14 mrad off the neutrino beam axis where the neutrinos have an energy distribution with a narrow peak around 2 GeV, and where the transition probability of ν μ →ν e is close to its maximum.  相似文献   

19.
We investigate the sensitivities of future neutrino oscillation experiments for measuring the neutrino mass squared differences and leptonic mixing angles independently with neutrinos and anti-neutrinos. We update the expected sensitivities of Neutrino Factories to the “atmospheric” (anti-)neutrino parameters using an optimized setup. A dedicated β-Beam facility, in combination with a SPMIN reactor experiment, could give excellent sensitivities also to the “solar” parameters, for neutrinos and anti-neutrinos respectively. A signal of a different mass matrix for neutrinos and anti-neutrinos would imply CPT violation and non-locality of the underlying particle theory.  相似文献   

20.
Neutrinoless double beta decay is one of the most sensitive tools in non-accelerator particle physics to probe the regime of physics beyond the standard model. It can provide in fact fundamental informations on the character of neutrinos and their absolute mass scale. The present status of experiments searching for neutrinoless double-beta decay (ββ(0ν)) is reviewed and the most relevant results discussed. Phenomenological aspects of ββ(0ν) are introduced. Given the observation of neutrino oscillations and the present knowledge of neutrino masses and mixing parameters, a possibility to observe ββ(0ν) at a neutrino mass scale m ν in the range 10–50 meV could actually exist. The achievement of the required experimental sensitivity is a real challenge faced by a number of new proposed projects. A review of the various proposed experiments in the context of their figure-of-merit parameters is given. The most important parameters contributing to the experimental sensitivity are finally outlined. A short discussion on nuclear matrix element calculations is also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号