首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.  相似文献   

2.
The grand potential for open systems describes thermodynamics of fluid flows at low Mach numbers. A new system of reduced equations for the grand potential and the fluid momentum is derived from the compressible Navier-Stokes equations. The incompressible Navier-Stokes equations are the quasistationary solution to the new system. It is argued that the grand canonical ensemble is the unifying concept for the derivation of models and numerical methods for incompressible fluids, illustrated here with a simulation of a minimal Boltzmann model in a microflow setup.  相似文献   

3.
Depletion interactions in colloidal suspensions confined between two parallel plates are investigated by using acceptance ratio method with grand canonical ensemble Monte Carlo simulation. The numerical results show that both the depletion potential and depletion force are affected by the confinement from the two parallel plates. Furthermore, it is found that in the grand canonical ensemble Monte Carlo simulation, the depletion interactions are strongly affected by the generalized chemical potential.  相似文献   

4.
We calculate the site occupation probabilities of one-dimensional lattice gas models within the canonical and grand canonical ensembles. The appearing differences do not vanish if we increase the system size keeping the site energies discrete. In this way one can explain the surprising numerical results of Barszczak and Kutner. This effect in the single-site occupation number disappears in higher dimensions.  相似文献   

5.
The generating functionals of the grand canonical and canonical thermodynamic equilibrium states of several models of free bosons with spin are calculated and the properties of the states discussed. In particular the distribution of condensate over the degenerate ground state is described, and it is shown that spinning bosons interacting with a magnetic field exhibit spontaneous magnetization at sufficiently low temperatures.  相似文献   

6.
根据吉布斯系综理论导出了由任意数目刚性粒子构成的力学系统的巨正则分布函数、化学势及粒子数和能量涨落公式.并介绍了刚球模型下,对二维和三维近独立子系系统巨正则分布的计算机模拟,结果与理论完全一致.  相似文献   

7.
A kinetic master equation for multiplicity distributions is formulated for charged particles which are created or destroyed only in pairs due to the conservation of their Abelian charge. It allows one to study time evolution of the multiplicity distributions in a relativistic many-body system with arbitrary average particle multiplicities. It is shown to reproduce the equilibrium results for both canonical (rare particles) and grand canonical (abundant particles) systems. For canonical systems, the equilibrium multiplicity is much lower and the relaxation time is much shorter than the naive extrapolation from grand canonical results. Implications for chemical equilibration in heavy-ion collisions are also discussed.  相似文献   

8.
Hadron gas models have proved successful in predicting particle production in relativistic nucleus-nucleus collisions. The extension of these models to the smaller systems formed in proton-nucleus collisions requires that the finite size of the system be considered. We study two features introduced by the finite size: the need to conserve strangeness and baryon number exactly by performing calculations in the canonical ensemble, and the inclusion of a finite size geometrical correction term in the single particle density of states. We find significant differences between the grand canonical and canonical ensembles and a strong dependence on the baryon number of the system.  相似文献   

9.
P.M. Centres 《Physica A》2009,388(10):2001-2019
The configurational entropy of straight rigid rods of length k (k-mers) adsorbed on square, honeycomb, and triangular lattices is studied by combining theory and Monte Carlo (MC) simulations in grand canonical and canonical ensembles. Three theoretical models to treat k-mer adsorption on two-dimensional lattices have been discussed: (i) the Flory-Huggins approximation and its modification to address linear adsorbates; (ii) the well-known Guggenheim-DiMarzio approximation; and (iii) a simple semi-empirical model obtained by combining exact one-dimensional calculations, its extension to higher dimensions and Guggenheim-DiMarzio approach. On the other hand, grand canonical and canonical MC calculations of the configurational entropy were obtained by using a thermodynamic integration technique. In the second case, the method relies upon the definition of an artificial Hamiltonian associated with the system of interest for which the entropy of a reference state can be exactly known. Thermodynamic integration is then applied to calculate the entropy in a given state of the system of interest. Comparisons between MC simulations and theoretical results were used to test the accuracy and reliability of the models studied.  相似文献   

10.
A new method is presented for the Monte Carlo simulations of polarizable models with induced dipole moments. This method updates induced dipole moments on all molecules when a single molecule is moved, without evaluating all pair interactions. Thus, depending on the number of molecules, it is 10–20 times faster than Monte Carlo simulations with full iteration. The efficiency makes it a powerful tool for the study of phase equilibria of polarizable models in grand canonical and Gibbs ensembles.  相似文献   

11.
Based on a general linear response approach we provide a systematic and unified survey of existing theories on persistent currents. The central notions in this context are equilibrium and dynamic persistent currents which are analyzed with respect to their similarities and differences in the canonical and grand canonical ensemble. We present criteria which relate the existence of persistent currents to the equipartition law and ergodicity for current correlators. We find that in additive Fermion systems at low temperatures both kinds of persistent currents coincide in the canonical ensemble whereas they differ in the grand canonical ensemble. Comparing different works on averaged persistent currents in diffusive mesoscopic rings within our framework and discussing several methods of calculating canonical currents with the help of grand canonical ensembles, we clarify some misunderstandings which have arisen in methodologically different approaches to the phenomenon of persistent currents. Finally, we relate the presence of dynamic persistent currents to the Hall conductivity on a finite cylinder and the center coordinate Kubo formula for the Hall conductivity.  相似文献   

12.
In this work we consider black hole solutions to Einstein's theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.  相似文献   

13.
14.
The nucleation of carbon caps on small nickel clusters is studied using a tight binding model coupled to grand canonical Monte Carlo simulations. It takes place in a well defined carbon chemical potential range, when a critical concentration of surface carbon atoms is reached. The solubility of carbon in the outermost Ni layers, that depends on the initial, crystalline or disordered, state of the catalyst and on the thermodynamic conditions, is therefore a key quantity to control the nucleation.  相似文献   

15.
We develop the general formalism of string scattering from decaying D-branes in bosonic string theory. In worldsheet perturbation theory, amplitudes can be written as a sum of correlators in a grand canonical ensemble of unitary random matrix models, with time setting the fugacity. An approach employed in the past for computing amplitudes in this theory involves an unjustified analytic continuation from special integer momenta. We give an alternative formulation which is well-defined for general momenta. We study the emission of closed strings from a decaying D-brane with initial conditions perturbed by the addition of an open string vertex operator. Using an integral formula due to Selberg, the relevant amplitude is expressed in closed form in terms of zeta functions. Perturbing the initial state can suppress or enhance the emission of high energy closed strings for extended branes, but enhances it for D0-branes. The closed string two point function is expressed as a sum of Toeplitz determinants of certain hypergeometric functions. A large N limit theorem due to Szegö, and its extension due to Borodin and Okounkov, permits us to compute approximate results showing that previous naive analytic continuations amount to the large N approximation of the full result. We also give a free fermion formulation of scattering from decaying D-branes and describe the relation to a grand canonical ensemble for a 2d Coulomb gas.  相似文献   

16.
The thermodynamic properties of bosons moving in a harmonic trap in an arbitrary number of dimensions are investigated in the grand canonical, canonical and microcanonical ensembles by applying combinatorial techniques developed earlier in statistical nuclear fragmentation models. Thermodynamic functions such as the energy and specific heat are computed exactly in these ensembles. The occupation of the ground or condensed state is also obtained exactly, and signals clearly the phase transition. The application of these techniques to fermionic systems is also briefly discussed. Received 18 August 1998 and Received in final form 14 October 1998  相似文献   

17.
We address the problem of whether there exists an external potential corresponding to a given equilibrium single particle density of a classical system. Results are established for both the canonical and grand canonical distributions. It is shown that for essentially all systems without hard core interactions, there is a unique external potential which produces any given density. The external potential is shown to be a continuous function of the density and, in certain cases, it is shown to be differentiable. As a consequence of the differentiability of the inverse map (which is established without reference to the hard core structure in the grand canonical ensemble), we prove the existence of the Ornstein-Zernike direct correlation function. A set of necessary, but not sufficient conditions for the solution of the inverse problem in systems with hard core interactions is derived.Work partially supported by NSF grant PHY-8117463Work partially supported by NSF grant PHY-8116101 A01  相似文献   

18.
A grand canonical Monte Carlo (GCMC) simulation method is presented for the determination of the phase equilibria of mixtures. The coexistence is derived by expanding the pressure into a Taylor series as a function of the temperature and the chemical potentials that are the independent intensive variables of the grand canonical ensemble. The coefficients of the Taylor series can be calculated from ensemble averages and fluctuation formulae that are obtained from GCMC simulations in both phases. The method is able to produce the equilibrium data in a certain domain of the (T, p) plane from two GCMC simulations. The vapour-liquid equilibrium results obtained for a Lennard-Jones mixture agree well with the corresponding Gibbs ensemble Monte Carlo data.  相似文献   

19.
We explicitly compute limit shapes for several grand canonical Gibbs ensembles of partitions of integers. These ensembles appear in models of aggregation and are also related to invariant measures of zero range and coagulation-fragmentation processes. We show, that all possible limit shapes for these ensembles fall into several distinct classes determined by the asymptotics of the internal energies of aggregates.  相似文献   

20.
G. Chaudhuri  S. Das Gupta 《Pramana》2010,75(2):171-183
Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical and grand canonical ensembles. A recursive relation developed recently allows calculations with arbitrary precision for many nuclear problems. Calculations are done to study the nature of phase transition in nuclear matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号