首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
李荣华  孟红兵  常秦 《应用数学》2006,19(2):231-235
研究了一类具有马尔可夫调制的线性随机微分方程Euler数值解的收敛性和稳定性,建立了Euler数值解MS稳定性的定义,确定了Euler数值解MS稳定的条件.  相似文献   

2.
This paper is concerned with exponential mean square stability of the classical stochastic theta method and the so called split-step theta method for stochastic systems. First, we consider linear autonomous systems. Under a sufficient and necessary condition for exponential mean square stability of the exact solution, it is proved that the two classes of theta methods with θ≥0.5θ0.5 are exponentially mean square stable for all positive step sizes and the methods with θ<0.5θ<0.5 are stable for some small step sizes. Then, we study the stability of the methods for nonlinear non-autonomous systems. Under a coupled condition on the drift and diffusion coefficients, it is proved that the split-step theta method with θ>0.5θ>0.5 still unconditionally preserves the exponential mean square stability of the underlying systems, but the stochastic theta method does not have this property. Finally, we consider stochastic differential equations with jumps. Some similar results are derived.  相似文献   

3.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods.  相似文献   

4.
5.
A system of differential equations with impulse effect is considered. It is assumed that this system has an invariant set MM. By means of the direct Lyapunov method, the necessary and sufficient conditions of its uniform asymptotic stability are obtained. The conditions on the perturbations of right hand sides of differential equations and impulse effects, under which the uniform asymptotic stability of the invariant set MM of the “nonperturbed” system implies the uniform asymptotic stability of the invariant set of the “perturbed” system, are obtained. The stability properties of invariant sets of periodic systems are also studied.  相似文献   

6.
We develop a notion of nonlinear expectation–GG-expectation–generated by a nonlinear heat equation with infinitesimal generator GG. We first study multi-dimensional GG-normal distributions. With this nonlinear distribution we can introduce our GG-expectation under which the canonical process is a multi-dimensional GG-Brownian motion. We then establish the related stochastic calculus, especially stochastic integrals of Itô’s type with respect to our GG-Brownian motion, and derive the related Itô’s formula. We have also obtained the existence and uniqueness of stochastic differential equations under our GG-expectation.  相似文献   

7.
In this paper, the mean-square stability of second-order Runge–Kutta schemes for multi-dimensional linear stochastic differential systems is studied. Motivated by the work of Tocino [Mean-square stability of second-order Runge–Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 175 (2005) 355–367] and Saito and Mitsui [Mean-square stability of numerical schemes for stochastic differential systems, in: International Conference on SCIentific Computation and Differential Equations, July 29–August 3 2001, Vancouver, British Columbia, Canada] we investigate the mean-square stability of second-order Runge–Kutta schemes for multi-dimensional linear stochastic differential systems with one multiplicative noise. Stability criteria are established and numerical examples that confirm the theoretical results are also presented.  相似文献   

8.
In this paper numerical methods for solving stochastic differential equations with Markovian switching (SDEwMSs) are developed by pathwise approximation. The proposed family of strong predictor–corrector Euler–Maruyama methods is designed to overcome the propagation of errors during the simulation of an approximate path. This paper not only shows the strong convergence of the numerical solution to the exact solution but also reveals the order of the error under some conditions on the coefficient functions. A natural analogue of the pp-stability criterion is studied. Numerical examples are given to illustrate the computational efficiency of the new predictor–corrector Euler–Maruyama approximation.  相似文献   

9.
Introducing certain singularities, we generalize the class of one-dimensional stochastic differential equations with so-called generalized drift. Equations with generalized drift, well-known in the literature, possess a drift that is described by the semimartingale local time of the unknown process integrated with respect to a locally finite signed measure νν. The generalization which we deal with can be interpreted as allowing more general set functions νν, for example signed measures which are only σσ-finite. However, we use a different approach to describe the singular drift. For the considered class of one-dimensional stochastic differential equations, we derive necessary and sufficient conditions for existence and uniqueness in law of solutions.  相似文献   

10.
We develop some numerical schemes for dd-dimensional stochastic differential equations derived from Milstein approximations of diffusions which are obtained by lifting the solutions of the stochastic differential equations to higher dimensional spaces using geometrical tools, in the line of the work [A.B. Cruzeiro, P. Malliavin, A. Thalmaier, Geometrization of Monte-Carlo numerical analysis of an elliptic operator: Strong approximation, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 481–486].  相似文献   

11.
A new explicit stochastic Runge–Kutta scheme of weak order 2 is proposed for non-commutative stochastic differential equations (SDEs), which is derivative-free and which attains order 4 for ordinary differential equations. The scheme is directly applicable to Stratonovich SDEs and uses 2m-12m-1 random variables for one step in the m-dimensional Wiener process case. It is compared with other derivative-free and weak second-order schemes in numerical experiments.  相似文献   

12.
In this paper, a stochastic partial differential equation with delays is considered. On the basis of the properties of nonnegative matrices, stochastic convolution and the inequality technique, sufficient conditions for determining the domain of ppth-moment attraction and the ppth-moment asymptotic stability region are obtained. An example is also discussed, to illustrate the efficiency of the results obtained.  相似文献   

13.
We study mean-square consistency, stability in the mean-square sense and mean-square convergence of drift-implicit linear multi-step methods with variable step-size for the approximation of the solution of Itô stochastic differential equations. We obtain conditions that depend on the step-size ratios and that ensure mean-square convergence for the special case of adaptive two-step-Maruyama schemes. Further, in the case of small noise we develop a local error analysis with respect to the hh–εε approach and we construct some stochastic linear multi-step methods with variable step-size that have order 2 behaviour if the noise is small enough.  相似文献   

14.
The class of stochastic Runge–Kutta methods for stochastic differential equations due to Rößler is considered. Coefficient families of diagonally drift-implicit stochastic Runge–Kutta (DDISRK) methods of weak order one and two are calculated. Their asymptotic stability as well as mean-square stability (MS-stability) properties are studied for a linear stochastic test equation with multiplicative noise. The stability functions for the DDISRK methods are determined and their domains of stability are compared to the corresponding domain of stability of the considered test equation. Stability regions are presented for various coefficients of the families of DDISRK methods in order to determine step size restrictions such that the numerical approximation reproduces the characteristics of the solution process.  相似文献   

15.
In this paper we connect the well established theory of stochastic differential inclusions with a new theory of set-valued stochastic differential equations. Solutions to the latter equations are understood as continuous mappings taking on their values in the hyperspace of nonempty, bounded, convex and closed subsets of the space L2L2 consisting of square integrable random vectors. We show that for the solution XX to a set-valued stochastic differential equation corresponding to a stochastic differential inclusion, there exists a solution xx for this inclusion that is a L2L2-continuous selection of XX. This result enables us to draw inferences about the reachable sets of solutions for stochastic differential inclusions, as well as to consider the viability problem for stochastic differential inclusions.  相似文献   

16.
非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性   总被引:2,自引:0,他引:2  
王文强  黄山  李寿佛 《计算数学》2007,29(2):217-224
本文首先将数值方法的均方稳定性的概念MS-稳定与GMS-稳定从线性试验方程推广到一般非线性的情形,然后针对一维情形下的非线性随机延迟微分方程初值问题,证明了如果问题本身满足零解是均方渐近稳定的充分条件,那么当漂移项满足一定的限制条件时,Euler- Maruyama方法是MS-稳定的与带线性插值的Euler-Maruyama方法是GMS-稳定的理论结果.  相似文献   

17.
We develop the Euler–Maruyama scheme for a class of stochastic differential equations with Markovian switching (SDEwMSs) under non-Lipschitz conditions  . Both L1L1 and L2L2-convergence are discussed under different non-Lipschitz conditions. To overcome the mathematical difficulties arisen from the Markovian switching as well as the non-Lipschitz coefficients, several new analytical techniques have been developed in this paper which should prove to be very useful in the numerical analysis of stochastic systems.  相似文献   

18.
胡鹏  黄乘明 《计算数学》2010,32(1):105-112
本文研究一类线性随机延迟积分微分方程Euler-Maruyama方法的MS-稳定性.首先,我们讨论方程真解的均方指数稳定性条件.然后,在此假设条件下,证明了带有复合梯形公式的Euler-Maruyama方法是MS-稳定的.最后,数值试验验证了本文的结论.  相似文献   

19.
We provide a condition in terms of a supermartingale property for a functional of the Markov process, which implies (a) ff-ergodicity of strong Markov processes at a subgeometric rate, and (b) a moderate deviation principle for an integral (bounded) functional. An equivalent condition in terms of a drift inequality on the extended generator is also given. Results related to (f,r)(f,r)-regularity of the process, of some skeleton chains and of the resolvent chain are also derived. Applications to specific processes are considered, including elliptic stochastic differential equations, Langevin diffusions, hypoelliptic stochastic damping Hamiltonian systems and storage models.  相似文献   

20.
In this paper, we introduced an accurate computational matrix method for solving systems of high order fractional differential equations. The proposed method is based on the derived relation between the Chebyshev coefficient matrix A of the truncated Chebyshev solution u(t)u(t) and the Chebyshev coefficient matrix A(ν)A(ν) of the fractional derivative u(ν)u(ν). The fractional derivatives are presented in terms of Caputo sense. The matrix method for the approximate solution for the systems of high order fractional differential equations (FDEs) in terms of Chebyshev collocation points is presented. The systems of FDEs and their conditions (initial or boundary) are transformed to matrix equations, which corresponds to system of algebraic equations with unknown Chebyshev coefficients. The remaining set of algebraic equations is solved numerically to yield the Chebyshev coefficients. Several numerical examples for real problems are provided to confirm the accuracy and effectiveness of the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号