首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.  相似文献   

2.
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.  相似文献   

3.
In contrast with the entanglement, we study the quantum discord dynamics of the two-qubit system in a symmetry-broken environment consisting of a fermionic bath. The quantum discord decay induced by the bath is analysed. By considering the two qubits that are initially prepared in the different X-states, we find that the behaviors of quantum discord and entanglement are different, the robustness of quantum discord depends on the initial state prepared in.  相似文献   

4.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

5.
首先,提出了一个改进超导电路结构,此结构能实现任意两个量子比特的相互作用而非近邻作用,长程作用是实现量子计算所必需的,此结构能用目前的技术制作。其次,基于此结构提出了Grover搜索算法实现的物理方案。由于能实现任意两量子比特之间的控制相位门,所以多比特Grover搜索算法也能实现,以满足各种量子计算的需要。此方案是一个基于电流控制的超导电荷比特网络结构的可扩展及易实现的Grover搜索算法实现方案。  相似文献   

6.
The quantum discord dynamics of two qubits in two independent non-Markovian reservoirs has been investigated. On the condition of resonant interactions, the result shows that the quantum discord has the phenomenon of “revival”. What is more, even in the region where the entanglement is zero, the quantum discord still can reveal the quantum correlations between the two qubits. Considering the detuning, it is interesting to note that the quantum discord can be preserved when the non-Markovian and the detuning conditions are satisfied simultaneously. Finally, an intuitive physical interpretation has been given by the quasimode approach.  相似文献   

7.
《Physics letters. A》2020,384(30):126760
Quantum discord is a measure based on local projective measurements which captures quantum correlations that may not be fully captured by entanglement. A change in the measurement process, achieved by replacing rank-one projectors with a weak positive operator-valued measure (POVM), allows one to define weak variants of quantum discord. In this work, we experimentally simulate the effect of a weak POVM on a nuclear magnetic resonance quantum information processor. The two-qubit system under investigation is part of a three-qubit system, where one of the qubits is used as an ancillary to implement the phase damping channel. The strength of the weak POVM is controlled by varying the strength of the phase damping channel. We experimentally observed two weak variants of quantum discord namely, super quantum discord and weak quantum discord, in two-qubit Werner and Bell-diagonal states. The resultant dynamics of the states is investigated as a function of the measurement strength.  相似文献   

8.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

9.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

10.
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successful protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.  相似文献   

11.
Y.H. Ji  W.D. Li  S.J. Wen 《Optik》2013,124(24):6882-6886
The paper investigates the dynamic evolution behaviors of entanglement and quantum discord of coupled superconducting qubits in circuit QED system. We put emphasis on the effects of cavity field quantum state on quantum entanglement and quantum correlations dynamic behaviors of coupling superconducting qubits. The results show that, (1) generally speaking, the entanglement will appear the death and new birth because of the interaction between qubits and cavity field, on the contrary, this phenomenon will not appear in quantum discord. (2) When the cavity field is in coherent state, the entanglement survival time is controlled by the average photon number. The more the average photon number is, the longer survival time of entanglement is prolonged. Thus it has the benefit of keeping quantum correlations. (3) When the cavity field is in squeezed state, the squeezed amplitude parameters have controlling effects on quantum correlations including entanglement and quantum discord. On the one hand, the increase of squeezed amplitude parameters can prolong the survival time of entanglement, on the other hand, with the increase of squeezed amplitude parameters, the robustness of quantum discord is more and more superior to concurrence and is more advantage to keep the system quantum correlations. The further study results show that the increase of the initial relative phase of coupling superconducting qubits can also keep the quantum correlations.  相似文献   

12.
We study the system-reservoir dynamics of quantum correlations in the decoherence phenomenon within a two-qubit composite system interacting with a common photonic band-gap (PBG) environment. We compare the dynamics of entanglement with that of quantum discord. By analytical and numerical analyses we find that, the quantum discord can maintain a constant value in the long-time limit even when entanglement suddenly disappears. We also show that the detuning conditions play a crucial role in controlling quantum correlations of the two-qubit system. In PBG environment, the stationary quantum discord can be attained in well-controlled conditions. Our results have lots of potential applications to quantum information processing in nanostructured materials.  相似文献   

13.
Starting from the exact evolution of a Markovian dissipative quantum walk, a non-Markovian decoherence of two qubits interacting with a phonon thermal bath has been investigated analytically using quantum information tools. Concurrence and quantum discord are affected in a complex way, showing that entanglement decreases with dissipation. At the limit where dissipation dominates, quantum correlations survive in time as ∝t−1/2t1/2. Thus, even under the influence of dissipation, two qubits retain their quantumness for a long time. Quantum correlations could be therefore observed for a long time in related photonic experiments.  相似文献   

14.
We consider the geometric global quantum discord(GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.  相似文献   

15.

Two-qubit X-state is a large class of quantum states which plays an important role in the quantification and dynamical study of quantum correlations. However, the corresponding quantification of quantum discord is still missing for bona fide discord measures, like original quantum discord, Bures distance of discord, and relative entropy of discord. In this paper, we consider the calculation of Bures distance of discord, which is a kind of correlations satisfying all criteria of a discord measure, for two-qubit X-states. Firstly, we derive explicit expression for Bures distance of discord for a kind of five-parameters family of states. Moreover, for general two-qubit X-states, we not only calculate the Bures distance of discord for a subset of two-qubit X-states by classifying and analyzing the optimal local measurements and the optimal projection operators, but also provide an analytic upper bound for entirety.

  相似文献   

16.
We have studied the analytical Markovian and non-Markovian dynamics of quantum correlations, such as entanglement, quantum discord and Bell nonlocalities for three noisy qubits. Quantum correlation as measured by quantum discord is found to be immune to death contrary to entanglement and Bell nonlocality for initial GHZ- or W-type mixed states.  相似文献   

17.
We discuss the symmetric quantum discord(SQD) for an arbitrary two-qubit state consisting of subsystems A and B and give the analysis formula of the symmetric quantum discord for the arbitrary two-qubit state. We also give the optimization process of the symmetric quantum discord for some states and obtain the symmetric quantum discord. We compare the quantum discord(QD) with the symmetric quantum discord, and find that the symmetric quantum discord is greater than the quantum discord. We also find that the symmetric quantum discord can be unequal to the quantum discord when the right quantum discord(measure on subsystem B) is equal to the left quantum discord(measure on subsystem A).  相似文献   

18.
Nonclassical correlations have been found useful in many quantum information processing tasks, and various measures have been proposed to quantify these correlations. In this work, we mainly study one of nonclassical correlations, called measurement-induced nonlocality (MIN). First, we establish a close connection between this nonlocal effect and the Bell nonlocality for two-qubit states. Then, we derive a tight monogamy relation of MIN for any pure three-qubit state and provide an alternative way to obtain similar monogamy relations for other nonclassical correlation measures, including squared negativity, quantum discord, and geometric quantum discord. Finally, we find that the tight monogamy relation of MIN is violated by some mixed three-qubit states, however, a weaker monogamy relation of MIN for mixed states and even multi-qubit states is still obtained.  相似文献   

19.
In this paper, we find that the geometric global quantum discord proposed by Xu and the total quantum correlations proposed by Hassan and Joag are identical. Moreover, we work out the analytical formulas of the geometric global quantum discord and geometric quantum discord both for two-qubit X states, respectively. We further illustrate how to use these formulas to deal with a few particular examples. We also compare the results achieved by using three kinds of geometric quantum discords. The geometric quantum discord is verified as a tight lower bound of the geometric global quantum discord for two-qubit X states.  相似文献   

20.
We study the quantum discord dynamics of two noninteracting qubits that are, respectively, subject to classical noise. The results show that the dynamics of quantum discord are dependent on both the coupling between the qubits and classical noise, and the average switching rate of the classical noise. In the weak-coupling Markovian region, quantum discord exhibits exponent decay without revival, and can be well protected by increasing the average classical noise switching rate. While in the strong-coupling non-Markovian region, quantum discord reveals slowly decayed oscillations with quick revival by decreasing the average switching rate of the classical noise. Thus, our results provide a new method of protecting quantum discord in a two-qubit system by controlling the coupling between the qubits and classical noise, and the average switching rate of the classical noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号