首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a recent paper, we presented a nonperturbative higher order Generalized Uncertainty Principle (GUP) that is consistent with various proposals of quantum gravity such as string theory, loop quantum gravity, doubly special relativity, and predicts both a minimal length uncertainty and a maximal observable momentum. In this Letter, we find exact maximally localized states and present a formally self-adjoint and naturally perturbative representation of this modified algebra. Then we extend this GUP to D dimensions that will be shown it is noncommutative and find invariant density of states. We show that the presence of the maximal momentum results in upper bounds on the energy spectrum of the free particle and the particle in box. Moreover, this form of GUP modifies blackbody radiation spectrum at high frequencies and predicts a finite cosmological constant. Although it does not solve the cosmological constant problem, it gives a better estimation with respect to the presence of just the minimal length.  相似文献   

2.
String theory, quantum geometry, loop quantum gravity and black hole physics all indicate the existence of a minimal observable length on the order of Planck length. This feature leads to a modification of Heisenberg uncertainty principle. Such a modified Heisenberg uncertainty principle is referred as gravitational uncertainty principle(GUP) in literatures. This proposal has some novel implications on various domains of theoretical physics. Here, we study some consequences of GUP in the spirit of Quantum mechanics. We consider two problem: a particle in an one-dimensional box and free particle wave function. In each case we will solve corresponding perturbational equations and compare the results with ordinary solutions.  相似文献   

3.
Various theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). In some recent papers, we showed that the GUP gives rise to corrections to the Schrödinger equation, which in turn affect all quantum mechanical Hamiltonians. In particular, by applying it to a particle in a one-dimensional box, we showed that the box length must be quantized in terms of a fundamental length (which could be the Planck length), which we interpreted as a signal of fundamental discreteness of space itself. In this Letter, we extend the above results to a relativistic particle in a rectangular as well as a spherical box, by solving the GUP-corrected Klein–Gordon and Dirac equations, and for the latter, to two and three dimensions. We again arrive at quantization of box length, area and volume and an indication of the fundamentally grainy nature of space. We discuss possible implications.  相似文献   

4.
An algebraic block-diagonalization of the Dirac Hamiltonian in a time-independent external field reveals a charge-index conservation law which forbids the physical phenomena of the Klein paradox type and guarantees a single-particle nature of the Dirac equation in strong external fields. Simultaneously, the method defines simpler quantum-mechanical objects—paulions and antipaulions, whose 2-component wave functions determine the Dirac electron states through exact operator relations. Based on algebraic symmetry, the presented theory leads to a new understanding of the Dirac equation physics, including new insight into the Dirac measurements and a consistent scheme of relativistic quantum mechanics of electron in the paulion representation. Along with analysis of the mathematical anatomy of the Klein paradox falsity, a complete set of paradox-free eigenfunctions for the Klein problem is obtained and investigated via stationary solutions of the Pauli-like equations with respective paulion Hamiltonians. It is shown that the physically correct Dirac states in the Klein zone are characterized by the total particle reflection from the potential step and satisfy the fundamental charge-index conservation law.  相似文献   

5.
6.
Almost all theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). Recently it was shown that the GUP gives rise to corrections to the Schrödinger and Dirac equations, which in turn affect all non-relativistic and relativistic quantum Hamiltonians. In this Letter, we apply it to superconductivity and the quantum Hall effect and compute Planck scale corrections. We also show that Planck scale effects may account for a (small) part of the anomalous magnetic moment of the muon. We obtain (weak) empirical bounds on the undetermined GUP parameter from present-day experiments.  相似文献   

7.
A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle’s energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts.  相似文献   

8.
When the Foldy-Wouthuysen (FW) transformation is exact and the particle energy is positive, upper spinors in the Dirac and FW representations differ only by a constant factor, and lower spinors in the FW representation are zero. Deducing FW wave eigenfunctions directly from Dirac wave eigenfunctions allows one to use the FW representation to calculate expectation values of needed operators and to derive quantum and semiclassical equations of motion. The text was submitted by the author in English.  相似文献   

9.
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle(GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In(1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials.  相似文献   

10.
Specific modifications of the usual canonical commutation relations between position and momentum operators have been proposed in the literature in order to implement the idea of the existence of a minimal observable length. Here, we study a consequence of this proposal in relativistic quantum mechanics by solving in the momentum space representation the Klein-Gordon oscillator in arbitrary dimensions. The exact bound states spectrum and the corresponding momentum space wave function are obtained. Following Chang et al, (Phys. Rev. D 65 (2002) 125027), we discuss constraint that can be placed on the minimal length by measuring the energy levels of an electron in a penning trap.  相似文献   

11.
Spatial and/or temporal propagation of light waves in periodic optical structures offers a unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based either on spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair production, the Dirac oscillator, the relativistic Kronig–Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.  相似文献   

12.
The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.  相似文献   

13.
One may ask whether the relations between energy and frequency and between momentum and wave vector, introduced for matter waves by de Broglie, are rigorously valid in the presence of gravity. In this paper, we show this to be true for Dirac equations in a background of gravitational and electromagnetic fields. We first transform any Dirac equation into an equivalent canonical form, sometimes used in particular cases to solve Dirac equations in a curved space-time. This canonical form is needed to apply Whitham’s Lagrangian method. The latter method, unlike the Wentzel–Kramers–Brillouin method, places no restriction on the magnitude of Planck’s constant to obtain wave packets and furthermore preserves the symmetries of the Dirac Lagrangian. We show by using canonical Dirac fields in a curved space-time that the probability current has a Gordon decomposition into a convection current and a spin current and that the spin current vanishes in the Whitham approximation, which explains the negligible effect of spin on wave packet solutions, independent of the size of Planck’s constant. We further discuss the classical-quantum correspondence in a curved space-time based on both Lagrangian and Hamiltonian formulations of the Whitham equations. We show that the generalized de Broglie relations in a curved space-time are a direct consequence of Whitham’s Lagrangian method and not just a physical hypothesis as introduced by Einstein and de Broglie and by many quantum mechanics textbooks.  相似文献   

14.
15.
A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.  相似文献   

16.
The two-component solutions of the Dirac equation currently in use are not separately a particle equation or an antiparticle equation. We present a unitary transformation that uncouples the four-component, force-free Dirac equation to yield a two-component spinor equation for the force-free motion of a relativistic particle and a corresponding two-component, time-reversed equation for an antiparticle. The particle-antiparticle nature of the two equations is established by applying to the solutions of these two-component equations criteria analogous to those applied for establishing the four-component particle and antiparticle solutions of the four-component Dirac equation. Wave function solutions of our two-component particle equation describe both a right and a left circularly polarized particle. Interesting characteristics of our solutions include spatial distributions that are confined in extent along directions perpendicular to the motion, without the artifice of wave packets, and an intrinsic chirality (handedness) that replaces the usual definition of chirality for particles without mass. Our solutions demonstrate that both the rest mass and the relativistic increase in mass with velocity of the force-free electron are due to an increase in the rate of Zitterbewegung with velocity. We extend this result to a bound electron, in which case the loss of energy due to binding is shown to decrease the rate of Zitterbewegung.  相似文献   

17.
根据Heisenberg对应原理(HCP),在经典极限下厄密算符的量子矩阵元对应经典物理量的Fourier展开系数.将HCP应用到相对论领域的Dirac方程中,对于自由粒子和在匀磁场中的带电粒子,其量子算符的矩阵元在经典极限下对应着相对论物理方程的解.计算表明,在经典极限下量子期望值就是对应经典物理量的时间平均值.  相似文献   

18.
In this article,we apply the Generalized Uncertainty Principle(GUP),which is consistent with quantum gravity theories to an elementary particle in a finite potential well,and study the quantum behavior in this system.The generalized Hamiltonian contains two additional terms,which are proportional to αp~3(the result of the maximum momentum assumption) and α~2p~4(the result of the minimum length assumption),where α ~ 1/M_(PIC) is the GUP parameter.On the basis of the work by Ali et al.,we solve the generalized Schrodinger equation which is extended to include the α~2 correction term,and find that the length L of the finite potential well must be quantized.Then a generalization to the double-square-well potential is discussed.The result shows that all the measurable lengths especially the distance between the two potential wells are quantized in units of α_0l_(PI) in GUP scenario.  相似文献   

19.
A geometrical way is described to associate quantum states in the sense of geometric quantization to wave functions in the quantum mechanical sense for each relativistic elementary particle. Explicit computations are made in a number of cases: Klein-Gordon and Dirac equations, neutrino and antineutrino Weyl equations, and very general cases of massive and massless particles of arbitrary spin. In this later case one is led in a canonical way to Penrose wave equations.  相似文献   

20.
In this paper we show how the dynamics of the Schr?dinger, Pauli and Dirac particles can be described in a hierarchy of Clifford algebras, C1,3, C3,0{\mathcal{C}}_{1,3}, {\mathcal{C}}_{3,0}, and C0,1{\mathcal{C}}_{0,1}. Information normally carried by the wave function is encoded in elements of a minimal left ideal, so that all the physical information appears within the algebra itself. The state of the quantum process can be completely characterised by algebraic invariants of the first and second kind. The latter enables us to show that the Bohm energy and momentum emerge from the energy-momentum tensor of standard quantum field theory. Our approach provides a new mathematical setting for quantum mechanics that enables us to obtain a complete relativistic version of the Bohm model for the Dirac particle, deriving expressions for the Bohm energy-momentum, the quantum potential and the relativistic time evolution of its spin for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号