首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all‐loop orders, based on the principle of reduction of couplings, and therefore are provided with a large predictive power. Confronting the predictions of SU(5) FUTs with the top and bottom quark masses and other low‐energy experimental constraints a light Higgs‐boson mass in the range Mh ∼ 121–126 GeV was predicted, in striking agreement with the recent discovery of a Higgs‐like state around ∼ 125.5 GeV at ATLAS and CMS. Furthermore the favoured model, a finiteness constrained version of the MSSM, naturally predicts a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV, consistent with the non‐observation of those particles at the LHC. Restricting further the best FUT's parameter space according to the discovery of a Higgs‐like state and B‐physics observables we find predictions for the rest of the Higgs masses and the supersymmetric particle spectrum.  相似文献   

2.
We investigate the one-loop effect of new charged scalar bosons on the Higgs potential at finite temperatures in the supersymmetric standard model with four Higgs doublet chiral superfields as well as a pair of charged singlet chiral superfields. In this model, the mass of the lightest Higgs boson h is determined only by the D-term in the Higgs potential at the tree-level, while the triple Higgs boson coupling for hhh can receive a significant radiative correction due to nondecoupling one-loop contributions of the additional charged scalar bosons. We find that the same nondecoupling mechanism can also contribute to realize stronger first order electroweak phase transition than that in the minimal supersymmetric standard model, which is definitely required for a successful scenario of electroweak baryogenesis. Therefore, this model can be a new candidate for a model in which the baryon asymmetry of the Universe is explained at the electroweak scale.  相似文献   

3.
For a long time, the minimal supersymmetric standard model (MSSM) with light masses for the supersymmetric states was considered as the most natural extension of the Standard Model of particle physics. Consequently, a valid approximation was to match the MSSM to the precision measurement directly at the electroweak scale. This approach was also utilized by all dedicated spectrum generators for the MSSM. However, the higher the supersymmetric (SUSY) scale is, the bigger the uncertainties which are introduced by this matching. We point out important consequences of a two-scale matching, where the running parameters within the SM are calculated at \(M_Z\) and evaluated up to the SUSY scale, where they are matched to the full model. We show the impact on gauge coupling unification as well as the SUSY mass spectrum. Also the Higgs mass prediction for large supersymmetric masses has been improved by performing the calculation within an effective SM. The approach presented here is now also available in the spectrum generator SPheno. Moreover, also SARAH was extended accordingly and gives the possibility to study these effects now in many different supersymmetric models.  相似文献   

4.
Within the minimal supersymmetric extension of the standard model, the mass of the light CP-even Higgs boson is computed to three-loop accuracy, taking into account the next-to-next-to-leading order effects from supersymmetric quantum chromodynamics. We consider two different scenarios for the mass hierarchies of the supersymmetric spectrum. Our numerical results amount to corrections of about 500 MeV, which is of the same order as the experimental accuracy expected at the CERN Large Hadron Collider.  相似文献   

5.
We consider the cosmological constraints on supersymmetric theories with a new, stable particle. Circumstantial evidence points to a neutral gauge/Higgs fermion as the best candidate for this particle, and we derive bounds on the parameters in the lagrangian which govern its mass and couplings. One favored possibility is that the lightest neutral supersymmetric particle is predominantly a photino γ with mass above 12 GeV, while another is that the lightest neutral supersymmetric particle is a Higgs fermion with mass above 5 GeV or less than O(100) eV. We also point out that a gravitino mass of 10 to 100 GeV implies that the temperature after completion of an inflationary phase cannot be above 1014 GeV, and probably not above 3 × 1012 GeV. This imposes constraints on mechanisms for generating the baryon number of the universe.  相似文献   

6.
Nowadays, in the MSSM, the moderate values of tan β are almost excluded by the LEP II lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-consistent solution in the limit of strong Yukawa coupling. This model allows one to get m h~125 GeV at tan β≥1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed 130.5±3.5 GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated supersymmetric models is also discussed.  相似文献   

7.
A theoretical analysis of solutions of renormalization group equations in the minimal supersymmetric standard model, which lead to a quasi-fixed point has shown that the mass of the lightest Higgs boson in these models does not exceed 94 ± 5 GeV. This implies that a considerable part of the parameter space in the minimal supersymmetric model is in fact eliminated by existing LEPII experimental data. In the nonminimal supersymmetric standard model the upper bound on the mass of the lightest Higgs boson reaches its maximum in the strong Yukawa coupling regime when the Yukawa constants are substantially greater than the gauge constants on the grand unification scale. In the present paper the particle spectrum is studied using the simplest modification of the nonminimal supersymmetric standard model which gives a self-consistent solution in this region of parameter space. This model can give m h ~ 125 GeV even for comparatively low values of β ≥ 1.9. The spectrum of Higgs bosons and neutralinos is analyzed using the method of diagonalizing mass matrices proposed earlier. In this model the mass of the lightest Higgs boson does not exceed 130.5 ± 3.5 GeV.  相似文献   

8.
A generalization of the Next-to-Minimal Supersymmetric Model (NMSSM) is studied in which an explicit μ-term as well as a small supersymmetric mass term for the singlet superfield are incorporated. We study the possibility of raising the Standard Model-like Higgs mass at tree level through its mixing with a light, mostly-singlet, CP-even scalar. We are able to generate Higgs boson masses up to 145 GeV with top squarks below 1.1 TeV and without the need to fine tune parameters in the scalar potential. This model yields light singlet-like scalars and pseudoscalars passing all collider constraints.  相似文献   

9.
We motivate and construct supersymmetric theories with continuous flavor symmetry, under which the electroweak Higgs doublets transform non-trivially. Flavor symmetry is spontaneously broken at a large mass scale in a sector of gauge-singlet fields; the light Higgs multiplets naturally emerge as special linear combinations that avoid acquiring the generic large mass. Couplings of the light Higgs doublets to light moduli fields from the singlet sector could lead to important effects in the phenomenology of the Higgs sector.  相似文献   

10.
Recent LHC data showed excesses of Higgs-like signals at the Higgs mass of around 125 GeV. This may indicate supersymmetric models with relatively heavy scalar fermions to enhance the Higgs mass. The desired mass spectrum is realized in the anomaly-mediated supersymmetry breaking model, in which the Wino can naturally be the lightest superparticle (LSP). We discuss possibilities for confirming such a scenario, particularly detecting signals from Wino LSP at direct detection experiments, indirect searches at neutrino telescopes and at the LHC.  相似文献   

11.
New NLO calculations have become available using resummed radiative corrections. Using these calculations we perform a global fit of the supergravity inspired constrained minimal supersymmetric model. We find that the resummed calculations show similar constraints as the LO calculations, namely that only with a relatively heavy supersymmetric mass spectrum of (1 TeV) the b– Yukawa unification and the rate can coexist in the large scenario. The resummed calculations are found to reduce the renormalization scale uncertainty considerably. The low scenario is excluded by the present Higgs limits from LEP II. The constraint from the Higgs limit in the plane is severe, if the trilinear coupling at the GUT scale is fixed to zero, but is considerably reduced for . The relatively heavy SUSY spectrum required by corresponds to a Higgs mass of GeV in the CMSSM. Received: 14 February 2001 / Revised version: 22 March 2001 / Published online: 29 June 2001  相似文献   

12.
We explore the possibility that QCD may undergo a phase transition as a function of the strange quark mass. This would hint towards models with ”spontaneous color symmetry breaking” in the vacuum. For two light quark flavors we classify possible colored quark-antiquark, diquark and gluon condensates that are compatible with a spectrum of integer charged states and conserved isospin and baryon number. The ”quark mass phase transition” would be linked to an unusual realization of baryon number in QCD2 and could be tested in lattice simulations. We emphasize, however, that at the present stage the Higgs picture of the vacuum cannot predict a quark mass phase transition - a smooth crossover remains as a realistic alternative. Implications of the Higgs picture for the high-density phase transition in QCD2 suggest that this transition is characterized by the spontaneous breaking of isospin for nuclear and quark matter. Received: 12 March 2001 / Revised version: 2 April 2003 / Published online: 2 June 2003 RID="a" ID="a" e-mail: C.Wetterich@thphys.uni-heidelberg.de  相似文献   

13.
We construct an explicit realistic SU(5) model in which softly broken supersymmetry is used to protect the Higgs doublets from quadratic mass renormalization. The model requires one natural but incredibly accurate adjustment of parameters. We argue that such an adjustment will be required in any supersymmetric GUT in which baryon number is not conserved.  相似文献   

14.
CHARANJIT S AULAKH 《Pramana》2016,86(2):207-221
The supersymmetric SO(10) theory (NMSO(10)GUT) based on the \({{\mathbf {210}+\mathbf {126} +\overline {\mathbf {126}}}}\) Higgs system proposed in 1982 has evolved into a realistic theory capable of fitting the known low energy particle physics data besides providing a dark matter candidate and embedding inflationary cosmology. It dynamically resolves longstanding issues such as fast dimension five-operator mediated proton decay in SUSY GUTs by allowing explicit and complete calculation of crucial threshold effects at MSUSY and MGUT in terms of fundamental parameters. This shows that SO(10) Yukawas responsible for observed fermion masses as well as operator dimension-five-mediated proton decay can be highly suppressed on a ‘Higgs dissolution edge’ in the parameter space of GUTs with rich superheavy spectra. This novel and generically relevant result highlights the need for every realistic UV completion model with a large /infinite number of heavy fields coupled to the light Higgs doublets to explicitly account for the large wave function renormalization effects on emergent light Higgs fields. The NMSGUT predicts large-soft SUSY breaking trilinear couplings and distinctive sparticle spectra. Measurable or near measurable level of tensor perturbations – and thus large inflaton mass scale – may be accommodated within the NMSGUT by supersymmetric see-saw inflation based on an LHN flat direction inflaton if the Higgs component contains contributions from heavy Higgs components. Successful NMSGUT fits suggest a renormalizable Yukawon ultraminimal gauged theory of flavour based upon the NMSGUT Higgs structure.  相似文献   

15.
We study the interplay between the spontaneous breaking of a global symmetry of the Higgs sector and gauge-mediated supersymmetry breaking, in the framework of a supersymmetric model with global SU(3) symmetry. In addition to solving the supersymmetric flavor problem and alleviating the little hierarchy problem, this scenario automatically triggers the breaking of the global symmetry and provides an elegant solution to the μ/ problem of gauge mediation. We study in detail the processes of global symmetry and electroweak symmetry breaking, including the contributions of the top/stop and gauge-Higgs sectors to the one-loop effective potential of the pseudo-Goldstone Higgs boson. While the joint effect of supersymmetry and of the global symmetry allows in principle the electroweak symmetry to be broken with little fine-tuning, the simplest version of the model fails to bring the Higgs mass above the LEP bound due to a suppressed tree-level quartic coupling. To cure this problem, we consider the possibility of additional SU(3)-breaking contributions to the Higgs potential, which results in a moderate fine-tuning. The model predicts a rather low messenger scale, a small tanβ value, a light Higgs boson with Standard Model-like properties, and heavy higgsinos.  相似文献   

16.
It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model. We will show that the type 1 two Higgs doublet model can also be as the effective of supersymmetry in a specific case with high scale supersymmetry breaking and gauge mediation. If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking, the Higgs spectrum is quite different. A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.  相似文献   

17.
The production mechanisms and decay modes of the heavy neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model are investigated at future e + e ? colliders in the TeV energy regime. We generate supersymmetric particle spectra by requiring the MSSM Higgs potential to produce correct radiative electroweak symmetry breaking, and we assume a common scalar mass m0, gaugino mass m1/2 and trilinear coupling A, as well as gauge and Yukawa coupling unification at the Grand Unification scale. Particular emphasis is put on the low tan β solution in this scenario where decays of the Higgs bosons to Standard Model particles compete with decays to supersymmetric charginos/neutralinos as well as sfermions. In the high tan β case, the supersymmetric spectrum is either too heavy or the supersymmetric decay modes are suppressed, since the Higgs bosons decay almost exclusively into b and τ pairs. The main production mechanisms for the heavy Higgs particles are the associated AH production and H +H? pair production with cross sections of the order of a few fb.  相似文献   

18.
We consider baryon and lepton number violating processes in the electroweak theory induced by gauge and Higgs fields passing the sphaleron solution at finite temperature. We show that for temperatures larger than 19 GeV the anomalous baryon and lepton number violating processes are suppressed by the Boltzmann factor exp (?βE sp), whereE sp is the sphaleron energy, rather than by the instanton tunneling factor exp (?8π2/g 2). We caculate the rate of baryon and lepton number violating processes at finite temperature and determine the freezing temperature of the anomalous processes in the early universe as a function of the Higgs mass. We compare the freezing temperature with the critical temperature of the electroweak phase transition infered from the one-loop finite-temperature effective potential. We obtain a critical Higgs mass of the order of 100 GeV, slightly depending on the top mass and the magnitude of the pre-exponential factor in the rate of theB non-conservation, above which the anomalous processes are certainly in equilibrium after the electroweak phase transition. Assuming that the temperature-dependence of the sphaleron energy is given by that found from the one-loop finitetemperature effective potential, this critical Higgs mass is lowered to a value of the order of 50 GeV.  相似文献   

19.
We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses and mixing as well as of the baryon asymmetry of the Universe, which is generated through soft leptogenesis employing a CP-violating phase and a resonant behavior in the supersymmetry breaking sector. We calculate the full gauge-annihilation cross section for the Higgs triplets, including all relevant supersymmetric intermediate and final states, as well as coannihilations with the fermionic superpartners of the triplets. We find that these gauge annihilation processes strongly suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis can occur only for a triplet mass at the TeV scale, where the contribution of soft supersymmetry breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity for testing the model in future colliders.  相似文献   

20.
We construct an anomaly-free supersymmetric U(1)' model with a secluded U(1)'-breaking sector. We study the one-loop effective potential at finite temperature and show that there exists a strong enough first order electroweak phase transition for electroweak baryogenesis (EWBG) because of the large trilinear term AhhSHdHu in the tree-level Higgs potential. Unlike in the minimal supersymmetric standard model, the lightest top squark can be very heavy. We consider the nonlocal EWBG mechanism in the thin wall regime and find that within uncertainties the observed baryon number can be generated from the tau lepton contribution, with the secluded sector playing an essential role. The chargino and neutralino contributions and the implications for the Z' mass and electric dipole moments are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号