首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have studied CPT violation in neutrino oscillation considering three flavor framework with matter effect. We have constructed a new way to find the oscillation probability incorporating CPT violating terms without any approximation. Then CPT   violation with atmospheric neutrinos for a magnetized iron calorimeter detector considering the muons (directly measurable with high resolution) of the charge current events has been studied for zero and nonzero θ13θ13 values. It is found that a potential bound of δb32?6×10−24 GeVδb32?6×1024 GeV at 99% CL can be obtained with 1 Mton.year exposure of this detector; and unlike neutrino beam experiments, there is no possibility to generate ‘fake’ CPT violation due to matter effect with atmospheric neutrinos. The advantages of atmospheric neutrinos to discriminate CPT violation from CP violation and nonstandard interactions are also discussed.  相似文献   

3.
The fermions of the Standard Model are integrated out to obtain the effective Lagrangian in the sector violating P and CP   at zero temperature. We confirm that no contributions arise for operators of dimension six or less and show that the leading operators are of dimension eight. To assert this we explicitly compute one such non-vanishing contribution, namely, that with three Z0Z0, two W+W+ and two WW. Terms involving just gluons and W?s are also considered, however, they turn out to vanish in the P-odd sector to eighth order. The analogous gluonic term in the CP-odd and P-even (C-odd) sector is non-vanishing and it is also computed. The expressions derived apply directly to massive Dirac neutrinos. All CP-violating results display the infrared enhancement already found at dimension six.  相似文献   

4.
We calculate the dominant one-loop radiative corrections arising from quark-squark loops to the mass squared matrix of theCP-even Higgs bosons in a non-minimal supersymmetric Standard Model containing two Higgs doublets and a Higgs singlet chiral superfield using one-loop effective potential approximation. We use this result to evaluate upper and lower bounds on the radiatively corrected masses of all the scalar Higgs bosons as a function of the parameters of the model. We find that the one-loop radiative corrections are substantial only for the lightest Higgs boson of the model and can push its mass beyond the reach of LEP. We also calculate an absolute upper bound on the mass of the radiatively corrected lightest Higgs boson and compare it with the corresponding bound in the minimal supersymmetric Standard Model.  相似文献   

5.
The mass-generation mechanism is the most urgent problem of modern particle physics. The discovery and study of the Higgs boson with the Large Hadron Collider at CERN are the highest priority steps to solve the problem. In this paper, the Standard Model Higgs mechanism of elementary particle mass generation is reviewed with pedagogical details. The discussion of the Higgs quadric self-coupling λ parameter and the bounds to the Higgs boson mass are presented. In particular, the unitarity, triviality, and stability constraints on the Higgs boson mass are discussed. The generation of a finite value for the λ parameter due to quantum corrections via effective potential is illustrated. Some simple predictions for the top quark and the Higgs boson masses are given when both the top Yukawa coupling and the Higgs self-coupling λ are equal to 1. The text was submitted by the authors in English.  相似文献   

6.
The Higgs sector of the Standard Model (SM) with one right-handed neutrino per family is systematically analyzed. In a model with intergenerational independent mixings between families, we can account for very light neutrinos acquiring Majorana masses radiatively at the first electroweak loop level. We also find that in such a scenario the Higgs coupling to the light-heavy neutrinos and to the heavy-heavy ones may be remarkably enhanced with significant implications for the production of these heavy neutrinos at high energy colliders.  相似文献   

7.
Theories beyond standard model enhance enormously Higgs boson pair production at threshold that can be studied at SSC, LHC or LEP-2. This process can test the existence of non-standard physics at much higher energy. We analyze the constraints on Higgs boson production imposed by non-standard physics.  相似文献   

8.
An introduction is made to the key concepts of gauge invariance and spontaneous symmetry breaking which are the foundations of the Standard Model of particle physics. A new scalar field corresponding to a spin-0 particle, the Higgs boson, is a necessary consequence of this model. Properties of the Higgs boson are constrained; however, its mass is not. Searches using LEP have been both unique, intense, and also efficient: the Standard Model Higgs boson must be heavier than 114 GeV/c2. A hint of a signal was obtained at 115 GeV/c2, but will have to be confirmed (or falsified) by forthcoming experiments at the Tevatron and LHC. To cite this article: M. Davier, C. R. Physique 8 (2007).  相似文献   

9.
《Comptes Rendus Physique》2002,3(9):1183-1191
Global precision tests of the Standard Model are presented. They demonstrate its validity at the per mille level. This precision, combined with the level of agreement between measured and predicted values of the observables, allowed to determine the top quark mass with ±5% accuracy and to constrain the Higgs mass within a narrow kinematical domain. To cite this article: A. Olchevski, M. Winter, C. R. Physique 3 (2002) 1183–1191.  相似文献   

10.
《Comptes Rendus Physique》2002,3(9):1193-1202
For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W+W threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV·c−2. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV·c−2 Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. To cite this article: P. Janot, M. Kado, C. R. Physique 3 (2002) 1193–1202.  相似文献   

11.
We study an effective theory beyond the standard model(SM) where either of the two additional gauge singlets, a Majorana fermion and a real scalar, constitutes all or some fraction of dark matter. In particular, we focus on the masses of the two singlets in the range of O(10) MeV-O(10) GeV with a neutrino portal interaction, which plays an important role not only in particle physics but also in cosmology and astronomy. We point out that the thermal dark matter abundance can be explained by(co-)annihilation, where the dark matter with a mass greater than 2 GeV can be tested in future lepton colliders, CEPC, ILC, FCC-ee and CLIC, in the light of the Higgs boson invisible decay. When the gauge singlets are lighter than O(100) MeV, the interaction can affect the neutrino propagation in the universe due to its annihilation with cosmic background neutrino into the gauge singlets. Although in this case it can not be the dominant dark matter, the singlets are produced by the invisible decay of the Higgs boson at such a rate which is fully within reach of future lepton colliders. In particular, a high energy cutoff of cosmic-ray neutrino,which may account for the non-detection of Greisen-Zatsepin-Kuzmin(GZK) neutrino or the non-observation of the Glashow resonance, can be set. Interestingly, given the cutoff and the mass(range) of WIMPs, a neutrino mass can be"measured" kinematically.  相似文献   

12.
We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle besides already present in the electroweak theory is required.  相似文献   

13.
We present the results for three-loop beta-function for the Higgs self-coupling calculated within the unbroken phase of the Standard Model. We also provide the results for three-loop beta-function for Higgs mass parameter, which was easily extracted from our calculation. Our results coincide with that of recent paper of K. Chetyrkin and M. Zoller (2013) [1]. In addition, the expression for the Higgs field anomalous dimension is given.  相似文献   

14.
In the Next-to-Minimal Supersymmetric Standard Model, CP-even Higgs bosons can have masses in the range of 80–110 GeV in agreement with constraints from LEP due to their sizeable singlet component. Nevertheless their branching ratio into two photons can be more than 10 times larger than the one of a Standard Model Higgs boson of similar mass due to a reduced coupling to b quarks. This can lead to a spectacular enhancement of the Higgs signal rate in the di-photon channel at hadron colliders by a factor 6. Corresponding scenarios can occur in the Next-to-Minimal Supersymmetric Standard Model for a relatively low Susy breaking scale.  相似文献   

15.
We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly Standard-Model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a Standard-Model-like Higgs boson above 140 GeV, it is necessarily accompanied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Available studies on Higgs-to-Higgs decays are discussed according to the various Higgs production modes, light Higgs masses and decay channels.  相似文献   

16.
《Comptes Rendus Physique》2007,8(9):999-1012
We review the realization of the Brout–Englert–Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models. To cite this article: J. Ellis et al., C. R. Physique 8 (2007).  相似文献   

17.
G. Degrassi  P. Slavich   《Nuclear Physics B》2010,825(1-2):119-150
We provide a full one-loop calculation of the self energies and tadpoles of the neutral Higgs bosons of the NMSSM. In addition, we compute the two-loop corrections to the neutral Higgs boson masses in the effective potential approximation. With respect to earlier calculations, the newly-computed corrections can account for shifts of a few GeV in the light scalar and pseudoscalar masses, and they can also sizeably affect the mixing between singlet and MSSM-like Higgs scalars. Taking these corrections into account will be crucial for a meaningful comparison between the MSSM and NMSSM predictions for the Higgs sector.  相似文献   

18.
Russian Physics Journal - Decay channels of the Higgs bosons $$ H\to A\overline{f},\kern1em A\to hf\overline{f},\kern1em {H}^{\pm}\to Hf{\overline{f}}^{\hbox{'}},\kern1em {H}^{\pm}\to...  相似文献   

19.
We point out that the strong-CP problem becomes even more pressing in the context of weak models where CP violation originates in the Higgs sector. θ renormalization is numerically too large at the one-loop level and even divergent at the two-loop level. When supersymmetry (SUSY) is introduced, many more possible sources for CP violation open up. θ renormalization could stay finite in perturbation theory, however, we find that the one-loop result turns out to be too large by orders of magnitude unless SUSY fields like gauginos and higgsinos are highly degenerate in mass or SUSY breaking proceeds in a very special way, or a Peccei-Quinn symmetry holds leading to superlight axions.  相似文献   

20.
A special Majorana model for three neutrino flavors is developed on the basis of the Pauli transformation group. In this model, the neutrinos possess a partially conserved generalized lepton (Pauli) charge that makes it possible to discriminate between neutrinos of different type. It is shown that, within the model in question, a transition from the basic “mass” representation, where the average value of this charge is zero, to the representation associated with physical neutrinos characterized by specific Pauli “flavor” charges establishes a relation between the neutrino mixing angles θ mix, 12, θ mix, 23, and θ mix, 13 and an additional relation between the Majorana neutrino masses. The Lagrangian mass part, which includes a term invariant under Pauli transformations and a representation-dependent term, concurrently assumes a “quasi-Dirac” form. With allowance for these relations, the existing set of experimental data on the features of neutrino oscillations makes it possible to obtain quantitative estimates for the absolute values of the neutrino masses and the 2β-decay mass parameter m ββ and a number of additional constraints on the neutrino mixing angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号