首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The twisted factorization of a tridiagonal matrix T plays an important role in inverse iteration as featured in the MRRR algorithm. The twisted structure simplifies the computation of the eigenvector approximation and can also improve the accuracy. A tridiagonal twisted factorization is given by T=M k Δ k N k where Δ k is diagonal, M k ,N k have unit diagonals, and the k-th column of M k and the k-th row of N k correspond to the k-th column and row of the identity, that is . This paper gives a constructive proof for the existence of the twisted factorizations of a general banded matrix A. We show that for a given twist index k, there actually are two such factorizations. We also investigate the implications on inverse iteration and discuss the role of pivoting.   相似文献   

2.
We present the recurrence formulas for computing the approximate inverse factors of tridiagonal and pentadiagonal matrices using bordering technique. Resulting algorithms are used to approximate the inverse of pivot blocks needed for constructing block ILU preconditioners for solving the block tridiagonal linear systems, arising from discretization of partial differential equations. Resulting preconditioners are suitable for parallel implementation. Comparison with other methods are also included.  相似文献   

3.
Two algorithms for computing the inverse factors of general tridiagonal and pentadiagonal matrices are obtained. Then, these algorithms are used for computing a block ILU preconditioner for the block tridiagonal linear system of equations. Some numerical results are given to show the robustness and efficiency of the preconditioner. The performance of the proposed preconditioner is compared with a recently proposed method.  相似文献   

4.
Summary. An adaptive Richardson iteration method is described for the solution of large sparse symmetric positive definite linear systems of equations with multiple right-hand side vectors. This scheme ``learns' about the linear system to be solved by computing inner products of residual matrices during the iterations. These inner products are interpreted as block modified moments. A block version of the modified Chebyshev algorithm is presented which yields a block tridiagonal matrix from the block modified moments and the recursion coefficients of the residual polynomials. The eigenvalues of this block tridiagonal matrix define an interval, which determines the choice of relaxation parameters for Richardson iteration. Only minor modifications are necessary in order to obtain a scheme for the solution of symmetric indefinite linear systems with multiple right-hand side vectors. We outline the changes required. Received April 22, 1993  相似文献   

5.
The inverse-free preconditioned Krylov subspace method of Golub and Ye [G.H. Golub, Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comp. 24 (2002) 312-334] is an efficient algorithm for computing a few extreme eigenvalues of the symmetric generalized eigenvalue problem. In this paper, we first present an analysis of the preconditioning strategy based on incomplete factorizations. We then extend the method by developing a block generalization for computing multiple or severely clustered eigenvalues and develop a robust black-box implementation. Numerical examples are given to illustrate the analysis and the efficiency of the block algorithm.  相似文献   

6.
We derive new perturbation bounds for eigenvalues of Hermitian matrices with block tridiagonal structure. The main message of this paper is that an eigenvalue is insensitive to blockwise perturbation, if it is well-separated from the spectrum of the diagonal blocks nearby the perturbed blocks. Our bound is particularly effective when the matrix is block-diagonally dominant and graded. Our approach is to obtain eigenvalue bounds via bounding eigenvector components, which is based on the observation that an eigenvalue is insensitive to componentwise perturbation if the corresponding eigenvector components are small. We use the same idea to explain two well-known phenomena, one concerning aggressive early deflation used in the symmetric tridiagonal QR algorithm and the other concerning the extremal eigenvalues of Wilkinson matrices.  相似文献   

7.
This paper introduces some efficient initials for a well-known algorithm (an inverse iteration) for computing the maximal eigenpair of a class of real matrices. The initials not only avoid the collapse of the algorithm but are also unexpectedly efficient. The initials presented here are based on our analytic estimates of the maximal eigenvalue and a mimic of its eigenvector for many years of accumulation in the study of stochastic stability speed. In parallel, the same problem for computing the next to the maximal eigenpair is also studied.  相似文献   

8.
The invariant imbedding technique is applied to the block tridiagonal systems in a general setting using, when necessary, the generalized Moore-Penrose inverse of a matrix. Three examples are given, and the existence and the stability of solutions are discussed.  相似文献   

9.
This paper presents an O(n2) method based on the twisted factorization for computing the Takagi vectors of an n‐by‐n complex symmetric tridiagonal matrix with known singular values. Since the singular values can be obtained in O(n2) flops, the total cost of symmetric singular value decomposition or the Takagi factorization is O(n2) flops. An analysis shows the accuracy and orthogonality of Takagi vectors. Also, techniques for a practical implementation of our method are proposed. Our preliminary numerical experiments have verified our analysis and demonstrated that the twisted factorization method is much more efficient than the implicit QR method, divide‐and‐conquer method and Matlab singular value decomposition subroutine with comparable accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off‐diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
与特征值计算的算法丰富多彩相比,在已知比较精确的特征值的情况下,求其相应的特征向量的算法却不多见,已有的算法有基本反迭代法[1][2][4][5]、交替法[3]等.到目前为止,计算特征向量的算法都是基于反迭代法的,衡量算法是否收敛都是以残量的大小为标准,本文的算法也不例外.本文的目的就是计算不可约实对称三对角矩阵T=[bj-1,aj,bj]的相应于某个特征值λi(已得到其近似λ)的特征向量.首先我们来看下面的例子:例1 我们取T为201阶的Wilkinson负矩阵,λ取计算的最大特征值,分别令迭代的初始向量是e1,e100,e201,e=(1,1,…,1)T.图1反映了反迭代的收敛速度.  相似文献   

12.
The difference in length between two distinct factorizations of an element in a Dedekind domain or in the corresponding block monoid is an object of study in the theory of non-unique factorizations. It provides an alternate way, distinct from what the elasticity provides, of measuring the degree of non-uniqueness of factorizations. In this paper, we discuss the difference in consecutive lengths of irreducible factorizations in block monoids of the form where . We will show that the greatest integer r, denoted by , which divides every difference in lengths of factorizations in can be immediately determined by considering the continued fraction of . We then consider the set including necessary and sufficient conditions (which depend on p) for a value to be an element of . 2000 Mathematics Subject Classification Primary—20M14, 11A55, 20D60, 11A51 Parts of this work are contained in the first author’s Doctoral Dissertation written at the University of North Carolina at Chapel Hill under the direction of the third author.  相似文献   

13.
In order to solve the large sparse systems of linear equations arising from numerical solutions of two-dimensional steady incompressible viscous flow problems in primitive variable formulation, we present block SSOR and modified block SSOR iteration methods based on the special structures of the coefficient matrices. In each step of the block SSOR iteration, we employ the block LU factorization to solve the sub-systems of linear equations. We show that the block LU factorization is existent and stable when the coefficient matrices are block diagonally dominant of type-II by columns. Under suitable conditions, we establish convergence theorems for both block SSOR and modified block SSOR iteration methods. In addition, the block SSOR iteration and AF-ADI method are considered as preconditioners for the nonsymmetric systems of linear equations. Numerical experiments show that both block SSOR and modified block SSOR iterations are feasible iterative solvers and they are also effective for preconditioning Krylov subspace methods such as GMRES and BiCGSTAB when used to solve this class of systems of linear equations.  相似文献   

14.
块三对角阵分解因子的估值与应用   总被引:1,自引:0,他引:1  
吴建平  李晓梅 《计算数学》2002,24(3):283-290
1.引 言 许多物理应用问题归结为求微分方程数值解,而这可以通过离散化为求解稀疏线性方程组,所以稀疏线性方程组求解的有效性在很大程度上决定了原问题求解算法的有效性.直接  相似文献   

15.
We study the stability of zero-fill incomplete LU factorizations of a nine-point coefficient matrix arising from a high-order compact discretisation of a two-dimensional constant-coefficient convection–diffusion problem. Nonlinear recurrences for computing entries of the lower and upper triangular matrices are derived and we show that the sequence of diagonal entries of the lower triangular factor is unconditionally convergent. A theoretical estimate of the limiting value is derived and we show that this estimate is a good predictor of the computed value. The unconditional convergence of the diagonal sequence of the lower triangular factor to a positive limit implies that the incomplete factorization process never encounters a zero pivot and that the other diagonal sequences are also convergent. The characteristic polynomials associated with the lower and upper triangular solves that occur during the preconditioning step are studied and conditions for the stability of the triangular solves are derived in terms of the entries of the tridiagonal matrices appearing in the lower and upper subdiagonals of the block triangular system matrix and a triplet of parameters which completely determines the solution of the nonlinear recursions. Results of ILU-preconditioned GMRES iterations and the effects of orderings on their convergence are also described.  相似文献   

16.
给出了一类周期三对角矩阵逆的新的递归算法.新方法充分利用周期三对角矩阵的结构特点,采用递归方法将高阶周期三对角矩阵求逆转化为低阶周期三对角矩阵的求逆.并同时得到简化的计算方法,方法可以有效地减少运算量和存储量,计算精度也有明显的优势.数值实验表明此算法是有效的.  相似文献   

17.
In this paper, we propose an inverse inexact iteration method for the computation of the eigenvalue with the smallest modulus and its associated eigenvector for a large sparse matrix. The linear systems of the traditional inverse iteration are solved with accuracy that depends on the eigenvalue with the second smallest modulus and iteration numbers. We prove that this approach preserves the linear convergence of inverse iteration. We also propose two practical formulas for the accuracy bound which are used in actual implementation. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
A new class of approximate inverses for arrowhead and special tridiagonal linear systems, based on the concept of sparse approximate Choleski-type factorization procedures, are introduced for computing fast explicit approximate inverses. Explicit preconditioned iterative schemes in conjunction with approximate inverse matrix techniques are presented for the efficient solution of symmetric linear systems. A theorem on the rate of convergence of the explicit preconditioned conjugate gradient scheme is given and estimates of the computational complexity are presented. Applications of the proposed method on linear and nonlinear systems are discussed and numerical results are given.  相似文献   

19.
This paper presents a formula for the Drazin inverses of matrices based on a sequence of partial full-rank factorizations which theoretically ex-tends the classic full-rank factorization method for computing the Drazin in-verses established by R.E.Cline.The result is then extended to the core-EP inverses.  相似文献   

20.
In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied.It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its super- and subdiagonal elements. The corresponding elements of the super- and subdiagonal will have the same absolute value.In this article some basic facts about a unitary equivalence transformation of an arbitrary matrix to tridiagonal form are firstly studied. Both an iterative reduction based on Krylov sequences as a direct tridiagonalization procedure via Householder transformations are reconsidered. This equivalence transformation is then applied to the normal case and equality of the absolute value between the super- and subdiagonals is proved. Self-adjointness of the resulting tridiagonal matrix with regard to a specific scalar product is proved. Properties when applying the reduction on symmetric, skew-symmetric, Hermitian, skew-Hermitian and unitary matrices and their relations with, e.g., complex symmetric and pseudo-symmetric matrices are presented.It is shown that the reduction can then be used to compute the singular value decomposition of normal matrices making use of the Takagi factorization. Finally some extra properties of the reduction as well as an efficient method for computing a unitary complex symmetric decomposition of a normal matrix are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号