首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of the structure factors (sizes of grains and precipitates) on the dislocation structure formed in polycrystals and alloys behind the shock wave front (elastic precursor) has been theoretically discussed in terms of the dislocation kinetic relationships and kinetic equation for the dislocation density. The critical conditions of the transition from the cellular dislocation structure to a uniform dislocation distribution have been formulated. These conditions are used to determine the dependences of the critical pressure, above which the dislocation distribution becomes uniform, on the grain size and precipitate volume density.  相似文献   

2.
3.
We analyse the interaction of a relativistic electron with a uniform magnetic field in the spiral dislocation spacetime.We show that analytical solutions to the Dirac equation can be obtained,where the spectrum of energy corresponds to the relativistic Landau levels.We also analyse the influence of the spiral dislocation on the relativistic Landau levels by showing that there exists an analogue of the Aharonov–Bohm effect for bound states.  相似文献   

4.
张纪才  王建峰  王玉田  杨辉 《物理学报》2004,53(8):2467-2471
利用x射线三轴晶衍射和光致发光谱研究了生长参数In源流量与Ⅲ族流量之比对InGaN/GaN多量子阱结构缺陷(如位错密度和界面粗糙度)和光致发光的影响.通过对(0002)对称和(1012)非对称联动扫描的每一个卫星峰的ω扫描,分别测量出了多量子阱的螺位错和刃位错平均密度,而界面粗糙度则由(0002)对称衍射的卫星峰半高全宽随级数的变化得出.试验发现多量子阱中的位错密度特别是刃位错密度和界面粗糙度随In源流量与Ⅲ族源流量比值的增加而增加,导致室温下光致发光性质的降低,从而也证明了刃位错在InGaN/GaN 关键词: x射线三轴晶衍射 界面粗糙度 位错 InGaN/GaN多量子阱  相似文献   

5.
Efficiency droop is generally observed in electroluminescence under high current injection. Optical characterization on efficiency droop in InGaN/GaN multiple-quantum-well structures has been conducted at 12 K. Clear droop behaviors were observed for the sample excited by above-bandgap excitation of GaN with pulse laser. The results show that dislocation is not the crucial factor to droop under high carrier density injection, and Auger recombination just slightly affects the efficiency. The radiative recombination may be mainly affected by a multi-carrier-related process (diffusion and drift with a factor of n 3.5 and n 5.5) at the interface between GaN barrier and InGaN well.  相似文献   

6.
Studies of recombination in a plasma of moderate density are reviewed. Conclusions are drawn regarding the possible use of ternary recombination to produce elevated populations of high-lying excited atomic and ionic levels and regarding the conditions in a gas-discharge plasma which provide the sharpest differences among these populations, with the higher-lying levels populated predominantly. There are additional recombination processes which could produce elevated populations in certain cases in the high-lying excited levels of atoms and ions haying displaced levels: radiationless two-particle recombination and ternary recombination of ions formed by the stripping of an electron from an inner shell.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 3, pp. 104–111, March, 1971.  相似文献   

7.
The effect of electron-beam irradiation on the motion of dislocations in II–VI compounds has been studied by TEM in-situ experiments. Straining experiments on ZnS samples demonstrate that the dislocation mobility is proportional to the electron-beam intensity. In CdTe, screw dislocation vibrate under the electron beam and finally acquire a serrated form. These observations are discussed in terms of enhancement of dislocation motion due to non-radiative recombination of electron-hole pairs at the dislocation.  相似文献   

8.
A simple model of dislocation band formed by the dangling bonds of atoms of a dislocation core has been presented and discussed. The parameters of this model, which could be verified experimentally, are the average energy of the dislocation band states and the average length of the dislocation as well as electron and hole emission coefficients. The formulas for statistical functions of distribution of electrons in these bands have been derived. Next, we have developed a model of the SRH recombination channel connected with dislocation band states and we have adopted it to determine an effective lifetime of electron-hole pairs including effect of dislocations. In addition, influence of the tunnelling current from and into dislocation band has been considered, which seems to be a serious issue in reverse biased heterostructue HgCdTe photodiodes. Exemplary results of calculations for HgCdTe structures show that the number of the ionized atoms of the dislocation cores is of the order of a few percent. Moreover, the electric potential distributions in the area of the dislocation core has been calculated. Some experimental I-V characteristics of near room temperature HgCdTe devices are presented and compared with numerical simulations, what indicate on contribution of dislocations as a SRH recombination channel.  相似文献   

9.
Predominant dislocation types in solar silicon are dissociated into 30°- and 90°-partials with reconstructed cores. Besides shallow 1D-band localized in their strain field and a quasi-2D band at the stacking fault connecting the two partials, the existence of several intrinsic core defects with deep lying levels has been demonstrated by electron spin resonance. The majority of core defects occur in nonequilibrium situations and, with the exception of a small EPR-signal assigned to a reconstruction defect, vanish after careful annealing above 800°C. There is good evidence now that part of deep levels observed in dislocated silicon is associated with impurities, especially with transition metal impurities. Electron-hole-pair recombination at a dislocation mainly runs via its shallow bands and is strongly increased by impurities bound to its core or in the strain field. The concentration of these impurities can be reduced by gettering processes to such a low level that radiative recombination at dislocations yields a luminescence efficiency of 0.1% at room temperature. A quite coherent picture has emerged for metal impurity precipitation in silicon. Early stages of precipitation in defect-free silicon are characterised by kinetically selected metastable defects forming as a result of large chemical driving forces for precipitation. Such defects are associated with deep level spectra which show the properties of extended multielectron defects. The evolution of the system to energetically more favourable configurations proceeds via ordinary particle coarsening but also via internal ripening, a process reminiscent of the above-mentioned metastable defects. Electronically, the defects evolve into metal-like inclusions which in general seem to act as strong recombination centers for minority carriers. In the presence of dislocations metastable defects quickly transform into equilibrium structures in the course of precipitation or do not form at all. In the presence of several metal impurities silicide precipitates which can be described as solid solutions of the respective metal atoms are observed, which is at least qualitatively in accord with ternary phase diagrams. Like single-metal silicide precipitates, strong minority carrier recombination is also typical for those multi-metal silicide particles.  相似文献   

10.
It is believed that the dynamics of dislocation processes during the deformation of nanocrystalline materials can only be visualized by computational simulations. Here we demonstrate that observations of dislocation processes during the deformation of nanocrystalline Ni with grain sizes as small as 10 nm can be achieved by using a combination of in situ tensile straining and high-resolution transmission electron microscopy. Trapped unit lattice dislocations are observed in strained grains as small as 5 nm, but subsequent relaxation leads to dislocation recombination.  相似文献   

11.
The effect of copper on dislocation luminescence centers in silicon has been investigated using photoluminescence and transmission electron microscopy. It has been demonstrated that there exist two main mechanisms responsible for quenching of dislocation luminescence by the copper impurity. The first mechanism is dominant at high copper concentrations and associated with the decrease in the time of nonradiative recombination of nonequilibrium charge carriers due to the formation of copper precipitates in silicon. This leads to the quenching of the entire dislocation luminescence and the edge exciton luminescence. The second mechanism is associated with the interaction of individual copper atoms with deep dislocation centers D1/D2, which results in the passivation of the recombination activity of these centers. This mechanism takes place even at room temperature and is highly effective at low copper concentrations.  相似文献   

12.
The gain mechanisms and recombination dynamics of InGaN layers strongly depend on the structural properties of the substrate material. The 4.5 nm and 9.5 nm thick layers were grown by metal organic chemical vapor deposition on two different substrates (sapphire and GaN) with different dislocation densities. Time‐resolved photoluminescence spectroscopy at high excitation densities identifies the saturation of nonradiative recombination centers through excited carriers as a major gain mechanism. The prime argument is an unusual nonexponential luminescence decay. This was confirmed by a lower threshold of the optical gain for the structures grown on GaN with lower dislocation densities. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The possibility of magnetic ordering at dangling bonds in dislocation cores has been investigated theoretically. It has been experimentally shown that magnetic ordering in dislocations affects the spin-dependent effects occurring in dislocation crystals of silicon. It has been found that preliminary magnetic treatment of silicon crystals in a weak magnetic field leads to the suppression of the electroplastic effect induced in silicon crystals excited by an electric current. It has been assumed that a change in the microplasticity under the combined action of a magnetic field and an electric current is caused by a weakening of spin-dependent recombination at dislocation dangling bonds.  相似文献   

14.
The direct simulation Monte Carlo (DSMC) method was employed to predict the etch rate distribution on Si wafer. The etchant is assumed to be Cl. The production rate of Cl due to electron impact was obtained separately by preprocessing an inductively coupled chlorine plasma by use of the particle-in-cell/Monte Carlo method. Under the condition of constant total pressure, the etch rate increases with the mass flow rate of source gas Cl2. The density of the etch product SiCl2 rapidly decreases with increasing the flow rate. The density of the etchant hardly depends on the flow rate. The recombination 2Cl→Cl2 on the inner walls of etching apparatus has a large effect on the etch rate; recombination probability of 0.1 results in 50% reduction of the etch rate. The etch rate distribution becomes more uniform when the reaction probability at the wafer surface is reduced  相似文献   

15.
We present a theory to simulate a coherent GaN QD with an adjacent pure edge threading dislocation by using a finite element method. The piezoelectric effects and the strain modified band edges are investigated in the framework of multi-band $\bm k\cdot \bm p$ theory to calculate the electron and the heavy hole energy levels. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The results indicate that the strain distribution of the threading dislocation affects the electronic structure. Moreover, the ground state transition behaviour is also influenced by the position of the adjacent threading dislocation.  相似文献   

16.
Abstract

The effect of initial dislocation density on subsequent dislocation evolution and strain hardening in FCC aluminium alloy under laser shock peening (LSP) was investigated by using three-dimension discrete dislocation dynamics (DD) simulation. Initial dislocations were randomly generated and distributed on slip planes for three different dislocation densities of 4.21 × 1012, 8.12 × 1012 and 1.26 × 1013 m?2. Besides, variable densities of prismatic loops were introduced into the DD cells as nanoprecipitates to study the dislocation pinning effect. The flow stresses as a function of strain rate obtained by DD simulation are compared with relevant experimental data. The results show a significant dislocation density accumulation in the form of dislocation band-like structures under LSP. The overall yield strength in FCC aluminium alloy decreases with increasing initial dislocation density and forest dislocation strengthening becomes negligible under laser induced ultra-high strain rate deformation. In addition, yield strength is enhanced by increasing the nanoprecipitate density due to dislocation pinning effect.  相似文献   

17.
对用X射线衍射法计算4H-SiC外延中的位错密度方法进行了理论和实验研究。材料中的位错密度大于106 cm-2会给材料位错密度的测试会带来一定的困难。首先从理论上分析了位错密度对X射线衍射结果的影响,得出位错密度和峰宽FWHM展宽的关系。然后对4H-SiC样品进行了X射线三轴晶ω-2θ测试,采用不同晶面衍射峰,计算出样品的位错密度。分析了外延中位错产生的原因,并提出了相应的解决办法。  相似文献   

18.
Multiscale characterization was performed on an Al–Mg alloy, Al 5754 O-temper, including in situ mechanical deformation in both the scanning electron microscope and the transmission electron microscope. Scanning electron microscopy characterization showed corresponding inhomogeneity in the dislocation and Mg distribution, with higher levels of Mg correlating with elevated levels of dislocation density. At the nanoscale, in situ transmission electron microscopy straining experiments showed that dislocation propagation through the Al matrix is characterized by frequent interactions with obstacles smaller than the imaging resolution that resulted in the formation of dislocation debris in the form of dislocation loops. Post-mortem chemical characterization and comparison to dislocation loop behaviour in an Al–Cr alloy suggests that these obstacles are small Mg clusters. Previous theoretical work and indirect experimental evidence have suggested that these Mg nanoclusters are important factors contributing to strain instabilities in Al–Mg alloys. This study provides direct experimental characterization of the interaction of glissile dislocations with these nanoclusters and the stress needed for dislocations to overcome them.  相似文献   

19.
We have calculated the recombination efficiency of a single dislocation as a function of its core radius and the minority carrier diffusion length. Comparison between theory and experiment shows that the dislocation core radius in GaP varies from <1Å in undoped samples to higher values in heavily doped and metal diffused samples.  相似文献   

20.
Bi0.98Nd0.02FeO3 (BNFO) and Ba0.8Sr0.2TiO3 (BST) epitaxial films produced by rf cathode sputtering on (001)MgO substrates are studied by means of XRD. The thickness dependences of uniform lattice deformations and linear dislocation density, generated due to epitaxial stress relaxation, are plotted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号