共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate kink-dark complex solitons(KDCSs) in a three-component Bose–Einstein condensate(BEC) with repulsive interactions and pair-transition(PT) effects. Soliton profiles critically depend on the phase differences between dark solitons excitation elements. We report a type of kink-dark soliton profile which shows a droplet-bubble-droplet with a density dip, in sharp contrast to previously studied bubble-droplets. The interaction between two KDCSs is further investigated. It demonstrates some striking particle transition behaviours during their collision processes, while soliton profiles survive after the collision. Additionally, we exhibit the state transition dynamics between a kink soliton and a dark soliton. These results suggest that PT effects can induce more abundant complex solitons dynamics in multi-component BEC. 相似文献
2.
M. R. Zhumaev M. Z. Sharipov N. N. Mirzhonova 《Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques》2017,11(3):570-574
The dynamics of solitons in the Bose–Einstein condensate under the effect of the fluctuation interaction of condensate atoms is studied. A system of equations of motion describing changes in the parameters of the soliton wave function is obtained using the method of the averaged Lagrangian. The minimum critical number of solitons is found, and the influence of the fluctuation interaction on the dynamics of solitons near their critical width is studied. 相似文献
3.
V. P. Ruban 《JETP Letters》2017,105(7):458-463
The dynamics of interacting quantum vortices in a quasi-two-dimensional spatially inhomogeneous Bose–Einstein condensate, whose equilibrium density vanishes at two points of the plane with a possible presence of an immobile vortex with a few circulation quanta at each point, has been considered in a hydrodynamic approximation. A special class of density profiles has been chosen, so that it proves possible to calculate analytically the velocity field produced by point vortices. The equations of motion have been given in a noncanonical Hamiltonian form. The theory has been generalized to the case where the condensate forms a curved quasi-two-dimensional shell in the three-dimensional space. 相似文献
4.
The dynamics of interacting quantized vortex filaments in a rotating Bose–Einstein condensate existing in the Thomas–Fermi regime at zero temperature and obeying the Gross–Pitaevskii equation has been considered in the hydrodynamic “nonelastic” approximation. A noncanonical Hamilton equation of motion for the macroscopically averaged vorticity has been derived for a smoothly inhomogeneous array of filaments (vortex lattice) taking into account spatial nonuniformity of the equilibrium density of the condensate, which is determined by the trap potential. The minimum of the corresponding Hamiltonian describes the static configuration of the deformed vortex lattice against the preset density background. The condition of minimum can be reduced to a nonlinear second-order partial differential vector equation for which some exact and approximate solutions are obtained. It has been shown that if the condensate density has an anisotropic Gaussian profile, the equation of motion for the averaged vorticity has solutions in the form of a vector exhibiting a nontrivial time dependence, but homogeneous in space. An integral representation has also been obtained for the matrix Green function that determines the nonlocal Hamiltonian of a system of several quantized vortices of an arbitrary shape in a Bose–Einstein condensate with the Gaussian density. In particular, if all filaments are straight and oriented along one of the principal axes of the ellipsoid, we have a finitedimensional reduction that can describe the dynamics of the system of pointlike vortices against an inhomogeneous background. A simple approximate expression is proposed for the 2D Green function with an arbitrary density profile and is compared numerically with the exact result in the Gaussian case. The corresponding approximate equations of motion, describing the long-wavelength dynamics of interacting vortex filaments in condensates with a density depending only on transverse coordinates, have been derived. 相似文献
5.
《Physics letters. A》2001,284(6):247-252
We investigate the existence and stability of solitons in an optical waveguide equipped with a Bragg grating (BG) in which nonlinearity contains both cubic and quintic terms. The model has straightforward realizations in both temporal and spatial domains, the latter being most realistic. Two different families of zero-velocity solitons, which are separated by a border at which solitons do not exist, are found in an exact analytical form. One family may be regarded as a generalization of the usual BG solitons supported by the cubic nonlinearity, while the other family, dominated by the quintic nonlinearity, includes novel “two-tier” solitons with a sharp (but nonsingular) peak. These soliton families also differ in the parities of their real and imaginary parts. A stability region is identified within each family by means of direct numerical simulations. The addition of the quintic term to the model makes the solitons very robust: simulating evolution of a strongly deformed pulse, we find that a larger part of its energy is retained in the process of its evolution into a soliton shape, only a small share of the energy being lost into radiation, which is opposite to what occurs in the usual BG model with cubic nonlinearity. 相似文献
6.
A. S. Grankin M. V. Komissarova A. P. Sukhorukov 《Bulletin of the Russian Academy of Sciences: Physics》2011,75(12):1633-1636
A variety of nonlinear optical effects arising upon the interaction of a signal beam with a strong pump beam at the second harmonic frequency in a nonlinear Bose-Einstein condensate is studied. Along with the ratio of signal and pump beam widths, the influence of the mutual geometry of the trap and the pump beam profile on the studied processes is investigated. 相似文献
7.
Biao Dong Lin-Xue Wang Guang-Ping Chen Wei Han Shou-Gang Zhang Xiao-Fei Zhang 《Annals of Physics》2016
We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with our numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. 相似文献
8.
9.
10.
J. Kobayashi Y. Izumi K. Enomoto M. Kumakura Y. Takahashi 《Applied physics. B, Lasers and optics》2009,95(1):37-42
We have performed two-photon photoassociation experiments in atomic Bose–Einstein condensate (BEC) of 87Rb with spin degree of freedom which is created by all-optical method with CO2 lasers. The spinor character of the molecules has been revealed by the photoassociation spectrum with a new structure. The
hyperfine structure of the molecules near the dissociation limit is identified by observations of the Zeeman and AC-Stark
effects of the molecules. The molecules have been spin-selectively probed by the use of the light shift. This result would
open the new possibility of research on novel spinor molecular BEC. 相似文献
11.
We investigate a kind of solitons in the two-component Bose–Einstein condensates with axisymmetric configurations in the R2×S1space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional(3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross–Pitaevskii equations in imaginary time. 相似文献
12.
An interplay of optical lattices and nonlinear impurities in controlling the dynamics of Bose–Einstein condensate bright solitons is investigated using an effective potential approach. The ability of pushing the solitons into or away from the impurity region by changing both lattice and impurity parameters is suggested. A possibility for the existence of stable fundamental gap solitons, which appear to satisfy an inverted Vakhitov–Kolokolov criterion, is examined. 相似文献
13.
We study the spatial structure of a Bose–Einstein condensate(BEC) with a space-dependent s-wave scattering length in a combined trap. There exists a space-dependent nonlinear atomic current in the system. The atomic current has an important influence on the spatial structure of the BEC. Research findings reveal that a large chemical potential can effectively suppress the chaotic spatial structure in the BEC system. Due to the large chemical potential, a strong atomic current is necessary to make... 相似文献
14.
15.
Hiromitsu Imai Kensuke Inaba Haruka Tanji-Suzuki Makoto Yamashita Tetsuya Mukai 《Applied physics. B, Lasers and optics》2014,116(4):821-829
A Bose–Einstein condensate was achieved in a stable magnetic trap on a persistent-supercurrent atom chip with a superconducting closed-loop circuit. We determined precisely the shape of the magnetic trapping potential by systematically controlling the persistent supercurrent. The condensation was verified by time-of-flight imaging and by atom number decay measurements. The measured decay rates agreed quantitatively with numerical simulations on the three-body loss process assuming all of the atoms to be a condensate. We also discuss the feasibility of creating a quasi-one-dimensional Bose gas on our atom chip. 相似文献
16.
《中国物理 B》2019,(10)
We experimentally and theoretically observe the expansion behaviors of a spherical Bose–Einstein condensate. A rubidium condensate is produced in an isotropic optical dipole trap with an asphericity of 0.037. We measure the variation of the condensate size in the expansion process after switching off the trap. The free expansion of the condensate is isotropic,which is different from that of the condensate usually produced in the anisotropic trap. We derive an analytic solution of the expansion behavior based on the spherical symmetry, allowing a quantitative comparison with the experimental measurement. The interaction energy of the condensate is gradually converted into the kinetic energy during the expansion and after a long time the kinetic energy saturates at a constant value. We obtain the interaction energy of the condensate in the trap by probing the long-time expansion velocity, which agrees with the theoretical calculation. This work paves a way to explore novel quantum states of ultracold gases with the spherical symmetry. 相似文献
17.
J. Söding D. Guéry-Odelin P. Desbiolles F. Chevy H. Inamori J. Dalibard 《Applied physics. B, Lasers and optics》1999,69(4):257-261
We have measured the three-body decay of a Bose–Einstein condensate of rubidium (87Rb) atoms prepared in the doubly polarized ground state F=m
F
=2. Our data are taken for a peak atomic density in the condensate varying between 2×1014 cm-3 at initial time and 7×1013 cm-3, 16 s later. Taking into account the influence of the uncondensed atoms on the decay of the condensate, we deduce a rate
constant for condensed atoms L=1.8 (±0.5) ×10-29 cm6 s-1. For these densities we did not find a significant contribution of two-body processes such as spin dipole relaxation.
Received: 24 November 1998 / Revised version: 26 June 1999 / Published online: 8 September 1999 相似文献
18.
We report on the optimized production of a Bose–Einstein condensate of cesium atoms using an optical trapping approach. Based on an improved trap loading and evaporation scheme we obtain more than 105 atoms in the condensed phase. To test the tunability of the interaction in the condensate we study the expansion of the condensate as a function of scattering length. We further excite strong oscillations of the trapped condensate by rapidly varying the interaction strength. PACS 03.75.Kk; 32.80.Pj 相似文献
19.
《中国物理 B》2019,(1)
The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and multi-valued relation, is presented with a rescaled barrier height and width. Our results show that the finite size makes the current–phase relation deviate a little bit from the cosine form for the soliton solution in the limit of a vanishing barrier, and the periodic boundary condition selects only the plane wave solution in the case of high barrier. The reason for multi-valued current–phase relation is given by investigating the behavior of soliton solution. 相似文献
20.
Ground-state vortex structures of a rotating binary dipolar Bose–Einstein condensate confined in harmonic plus quartic potential 下载免费PDF全文
《中国物理 B》2019,(1)
We consider a binary dipolar Bose–Einstein condensate confined in a rotating harmonic plus quartic potential trap.The ground-state vortex structures are numerically obtained as a function of the contact interactions and the dipole–dipole interaction in both slow and rapid rotation cases. The results show that the vortex configurations depend strongly on the strength of the contact interactions, the relative strength between dipolar and contact interactions, as well as on the orientation of the dipoles. A variety of exotic ground-state vortex structures, such as pentagonal and hexagon vortex lattice,square vortex lattice with a central vortex, annular vortex lines, and straight vortex lines, are observed by turning such controllable parameters. Our results deepen the understanding of effects of dipole–dipole interaction on the topological defects. 相似文献