首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The docosahedral metallacarboranes 4,4-(PMe(2)Ph)2-4,1,6-closo-PtC(2)B(10)H(12), 4,4-(PMe(2)Ph)2-4,1,10-closo-PtC(2)B(10)H(12), and [N(PPh(3))2][4,4-cod-4,1,10-closo-RhC(2)B(10)H(12)] were prepared by reduction/metalation of either 1,2-closo-C(2)B(10)H(12) or 1,12-closo-C(2)B(10)H(12). All three species were fully characterized, with a particular point of interest of the latter being the conformation of the {ML2} fragment relative to the carborane ligand face. Comparison with conformations previously established for six other ML(2)C(2)B(10) species of varying heteroatom patterns (4,1,2-MC(2)B(10), 4,1,6-MC(2)B(10), 4,1,10-MC(2)B(10), and 4,1,12-MC(2)B(10)) reveals clear preferences. In all cases a qualitative understanding of these was afforded by simple MO arguments applied to the model heteroarene complexes [(PH3)2PtC(2)B(4)H(6)]2- and [(PH3)2PtCB(5)H(6)]3-. Moreover, DFT calculations on [(PH3)2PtC(2)B(4)H(6)]2- in its various isomeric forms approximately reproduced the observed conformations in the 4,1,2-, 4,1,6-, and 4,1,10-MC(2)B(10) species, although analogous calculations on [(PH3)2PtCB(5)H(6)]3- did not reproduce the conformation observed in the 4,1,12-MC(2)B(10) metallacarborane. DFT calculations on (PH3)2PtC(2)B(10)H(12) yielded good agreement with experimental conformations in all four isomeric cases. Apparent discrepancies between observed and computed Pt-C distances were probed by further refinement of the 4,1,2- model to 1,2-(CH2)3-4,4-(PMe3)2-4,1,2-closo-PtC(2)B(10)H(10). This still has a more distorted structure than measured experimentally for 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10), but the structural differences lie on a very shallow potential energy surface. For the model compound a henicosahedral transition state was located 8.3 kcal mol(-1) above the ground-state structure, consistent with the fluxionality of 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10) in solution.  相似文献   

2.
Reduction of the tethered carborane 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) followed by metallation with {CpCo} or {(p-cymene)Ru} fragments affords both C,C'-dimethyl 4,1,2-MC(2)B(10) and 4,1,6-MC(2)B(10) species. DFT calculations indicate that the barriers to isomerisation of both 4-Cp-4,1,2-closo-CoC(2)B(10)H(12) and 4-(η-C(6)H(6))-4,1,2-closo-RuC(2)B(10)H(12) to their respective 4,1,6-isomers are too high for this to be the origin of the unexpected formation of 4,1,6-MC(2)B(10) products (in marked contrast to the related isomerisation of 1,2-closo-C(2)B(11)H(13) to 1,6-closo-C(2)B(11)H(13)), and, indeed, the 4,1,2-species are recovered unchanged from refluxing toluene. Equally, the DFT-calculated profile for the isomerisation of [7,8-nido-C(2)B(10)H(12)](2-) to [7,9-nido-C(2)B(10)H(12)](2-) suggests that the unexpected formation of 4,1,6-metallacarboranes is unlikely to result from isomerisation of a reduced (nido) carborane following desilylation. Instead, the source of the 4,1,6-MC(2)B(10) compounds is traced to desilylation of 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) by Li or Na prior to reduction. The supraicosahedral metallacarboranes 1,8-Me(2)-4-Cp-4,1,8-closo-CoC(2)B(10)H(10), 1,12-Me(2)-4-Cp-4,1,12-closo-CoC(2)B(10)H(10) and 1,12-Me(2)-4-(p-cymene)-4,1,12-closo-RuC(2)B(10)H(10) are also reported with all new species characterised both spectroscopically and crystallographically.  相似文献   

3.
Reduction of 1,2-closo-C2B10H12 followed by treatment with [RuCl2(p-cymene)]2(p-cymene = C6H4MeiPr-1,4) affords the 13-vertex ruthenacarborane 4-(p-cymene)-4,1,6-closo-RuC2B10H12, characterised both spectroscopically and, in two crystalline forms, crystallographically. Although asymmetric in the solid state, having a docosahedral cage architecture with cage C atoms at vertices 1 and 6, this species clearly has Cs symmetry on the NMR timescale at room temperature. However, the fluctional process in operation can be arrested at low temperature, and an activation energy of 43.1 kJ mol(-1) is estimated. A computational study of the related species 4-(eta-C6H6)-4,1,6-closo-RuC2B10H12 reveals that the fluctionality is due to a double diamond-square-diamond process, first suggested by Hawthorne et al for the analogous CpCo species. These calculations yield an activation energy of 40.4 kJ mol(-1), in excellent agreement with that derived from experiment. Reduction of 1,2-Ph(2)-1,2-closo-C2B10H10 followed by treatment with [RuCl2(eta-C6H6)]2 or [RuCl2(p-cymene)]2 yields the analogous species 1,6-Ph2-4-(eta-C6H6)-4,1,6-closo-RuC2B10H10 and 1,6-Ph2-4-(p-cymene)-4,1,6-closo-RuC2B10H10, respectively. These C,C-diphenyl compounds were again studied spectroscopically and crystallographically, the p-cymene species again showing two crystalline modifications. In contrast to their CpCo and Cp*Co analogues all three ruthenacarboranes do not undergo isomerisation in refluxing toluene.  相似文献   

4.
Syntheses, properties, and synthetic applications of 13-vertex closo- and nido-carboranes are reported. Reactions of the nido-carborane salt [(CH2)3C2B10H10]Na2 with dihaloborane reagents afforded 13-vertex closo-carboranes 1,2-(CH2)3-3-R-1,2-C2B11H10 (R = H (2), Ph (3), Z-EtCH=C(Et) (4), E-(t)BuCH=CH (5)). Treatment of the arachno-carborane salt [(CH2)3C2B10H10]Li4 with HBBr2.SMe2 gave both the 13-vertex carborane 2 and a 14-vertex closo-carborane (CH2)3C2B12H12 (8). On the other hand, the reaction of [C6H4(CH2)2C2B10H10]Li4 with HBBr2.SMe2 generated only a 13-vertex closo-carborane 1,2-C6H4(CH2)2-1,2-C2B11H11 (9). Electrophilic substitution reactions of 2 with excess MeI, Br2, or I2 in the presence of a catalytic amount of AlCl3 produced the hexa-substituted 13-vertex carboranes 8,9,10,11,12,13-X6-1,2-(CH2)3-1,2-C2B11H5 (X = Me (10), Br (11), I (12)). The halogenated products 11 and 12 displayed unexpected instability toward moisture. The 13-vertex closo-carboranes were readily reduced by groups 1 and 2 metals. Accordingly, several 13-vertex nido-carborane dianionic salts [nido-1,2-(CH2)3-1,2-C2B11H11][Li2(DME)2(THF)2] (13), [[nido-1,2-(CH2)3-1,2-C2B11H11][Na2(THF)4]]n (13a), [[nido-1,2-(CH2)3-3-Ph-1,2-C2B11H10][Na2(THF)4]]n (14), [[nido-1,2-C6H4(CH2)2-1,2-C2B11H11][Na2(THF)4]]n (15), and [nido-1,2-(CH2)3-1,2-C2B11H11][M(THF)5] (M = Mg (16), Ca (17)) were prepared in good yields. These carbon-atom-adjacent nido-carboranes were not further reduced to the corresponding arachno species by lithium metal. On the other hand, like other nido-carborane dianions, they were useful synthons for the production of super-carboranes and supra-icosahedral metallacarboranes. Interactions of 13a with HBBr2.SMe2, (dppe)NiCl2, and (dppen)NiCl2 gave the 14-vertex carborane 8 and nickelacarboranes [eta5-(CH2)3C2B11H11]Ni(dppe) (18) and [eta5-(CH2)3C2B11H11]Ni(dppen) (19), respectively. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Some were further confirmed by single-crystal X-ray diffraction studies.  相似文献   

5.
The reaction between [Co(PMe3)4] and B2(4-Mecat)2 (4-Mecat = 1,2-O2-4-MeC6H3) or between [Co(PMe2Ph)4] and B2(cat)2 (cat = 1,2-O2C6H4) affords the paramagnetic Co(II) bisboryl complexes [Co(PMe3)3[B(4-Mecat)]2] and [Co(PMe2Ph)3{B(cat)]2] respectively, both of which have been structurally characterised. ESR data and preliminary diboration and boryl transfer reactivity studies are also presented. The reaction between [CoMe(PMe3)4] and B2(cat)2 affords the Co(I) monoboryl complex [Co(PMe3)4[B(cat)]].  相似文献   

6.
The highly electrophilic, coordinatively unsaturated, 16-electron [Ru(P(OH)3)(dppe)2][OTf]2 (dppe = Ph2PCH2CH2PPh2) complex 1 activates the H-H, the Si-H, and the B-H bonds, in H2(g), EtMe2SiH and Et3SiH, and H3B.L (L = PMe3, PPh3), respectively, in a heterolytic fashion. The heterolysis of H2 involves an eta2-H2 complex (observable at low temperatures), whereas the computations indicate that those of the Si-H and the B-H bonds proceed through unobserved eta1-species. The common ruthenium-containing product in these reactions is trans-[Ru(H)(P(OH)3)(dppe)2][OTf], 2. The [Ru(P(OH)3)(dppe)2][OTf]2 complex is unique with regard to activating the H-H, the Si-H, and the B-H bonds in a heterolytic manner. These reactions and the heterolytic activation of the C-H bond in methane by the model complex [Ru(POH)3)(H2PCH2CH2PH2)2][Cl][OTf], 4, have been investigated using computational methods as well, at the B3LYP/LANL2DZ level. While the model complex activates the H-H, the Si-H, and the B-H bonds in H2, SiH4, and H3B.L (L = PMe3, PPh3), respectively, with a low barrier, activation of the C-H bond in CH4 involves a transition state of 57.5 kcal/mol high in energy. The inability of the ruthenium complex to activate CH4 is due to the undue stretching of the C-H bond needed at the transition state, in comparison to the other substrates.  相似文献   

7.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

8.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

9.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

10.
The reaction of CpMo(CO)(dppe)Cl (dppe = Ph2PCH2CH2PPh2) with Na+[AlH2(OCH2CH2OCH3)2]- gives the molybdenum hydride complex CpMo(CO)(dppe)H, the structure of which was determined by X-ray crystallography. Electrochemical oxidation of CpMo(CO)(dppe)H in CH3CN is quasi-reversible, with the peak potential at -0.15 V (vs Fc/Fc+). The reaction of CpMo(CO)(dppe)H with 1 equiv of Ph3C+BF4- in CD3CN gives [CpMo(CO)(dppe)(NCCD3)]+ as the organometallic product, along with dihydrogen and Gomberg's dimer (which is formed by dimerization of Ph3C.). The proposed mechanism involves one-electron oxidation of CpMo(CO)(dppe)H by Ph3C+ to give the radical-cation complex [CpMo(CO)(dppe)H].+. Proton transfer from [CpMo(CO)(dppe)H].+ to CpMo(CO)(dppe)H, loss of dihydrogen from [CpMo(CO)(dppe)(H)2]+, and oxidation of Cp(CO)(dppe)Mo. by Ph3C+ lead to the observed products. In the presence of an amine base, the stoichiometry changes, with 2 equiv of Ph3C+ being required for each 1 equiv of CpMo(CO)(dppe)H because of deprotonation of [CpMo(CO)(dppe)H].+ by the amine. Protonation of CpMo(CO)(dppe)H by HOTf provides the dihydride complex [CpMo(CO)(dppe)(H)2]+OTf-, which loses dihydrogen to generate CpMo(CO)(dppe)(OTf).  相似文献   

11.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

12.
Reduction of 1,12-closo-C2B10H12 followed by reaction with the appropriate metal halide and metathesis with either [K(18-crown-6)]Br or [BTMA]Cl ([BTMA] = [C6H5CH2N(CH3)3]+) affords isolable salts of the supraicosahedral metallacarborane sandwich anions [4,4-M-(1,10-closo-C2B10H12)2]n- in moderate to good yield. Compounds prepared are [BTMA][4,4-Co-(1,10-closo-C2B10H12)2] ( 1), [K(18-crown-6)][4,4-Co-(1,10-closo-C2B10H12)2] ( 2), [K(18-crown-6)]2[4,4-Ni-(1,10-closo-C2B10H12)2] ( 3), [K(18-crown-6)]2[4,4-Fe-(1,10-closo-C2B10H12)2] ( 4), [BTMA]2[4,4-Fe-(1,10-closo-C2B10H12)2] ( 5) and [K(18-crown-6)]2[4,4-Ti-(1,10-closo-C2B10H12)2] ( 6). Oxidation of the iron(II) species 4 and 5 with FeCl3 in THF generates the iron(III) analogues [K(18-crown-6)][4,4-Fe-(1,10-closo-C2B10H12)2] ( 7) and [BTMA][4,4-Fe-(1,10-closo-C2B10H12)2] ( 8), respectively. All diamagnetic compounds were characterised spectroscopically and the structures of 1, 3, 4, 6, 7 and 8 were established by single crystal X-ray diffraction. All anions have the anticipated cluster structures with two docosahedral 13-vertex cages joined at the central metal atom (the common degree-six vertex 4). Carbon atoms occupy the degree-four vertex 1 and the degree-five vertex 10. 11B NMR spectroscopy suggests the anions have, on the NMR timescale, C2h symmetry in solution at room temperature, consistent with free rotation, or at least substantial libration, of cage units about the long molecular axis. In the solid state the relative conformations of the two cages may be rationalised by simple bonding arguments, the single exception being the conformation of 4, in which both cages are subject to directional B-H...K+ interactions to the [K(18-crown-6)]+ counterion. The salts 3, 6 and 7 also show B-H...K+ interactions but involving one cage only.  相似文献   

13.
Thermolyses of [(PMe2Ph)2PdB8H12] and [(PMe2Ph)2PtB8H12] respectively yield eighteen-vertex [(PMe2Ph)2Pd2B16H20(PMe2Ph)2] and [(PMe2Ph)3Pt2B16H18(PMe2Ph)], which exhibit structure models for probable successive precursive intermediates for the more condensed macropolyhedral metallaboranes [(PMe2Ph)4Pt3B14H16], [(PMe2Ph)2Pt2B12H16] and [(PMe2Ph)2Pt2B16H15(C6H4Me)(PMe2Ph)] that have previously been reported as products from [(PMe2Ph)2PdB8H12] thermolyses.  相似文献   

14.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

15.
A family of hexa-coordinated ruthenium(II) complexes of bis(N-pyridylimidazolylidenyl)methane (L) were prepared and structurally characterized. Carbene transfer reactions of [Ru(p-cymene)Cl(2)](2), [Ru(CO)(2)Cl(2)](n) and RuHCl(CO)(PPh(3))(3) with silver-NHC complexes in situ generated from [H(2)L](PF(6))(2) and Ag(2)O afforded [RuL(CH(3)CN)(2)](PF(6))(2) (1), [Ru(2)L(p-cymene)(2)Cl(2)](PF(6))(2) (2), [RuL(CO)(2)](PF(6))(2) (3) and [RuL(PPh(3))(2)](PF(6))(2) (4), respectively. The reactions of 1 towards several N- and P-donors were studied. The treatment of 1 with 1,10-phenanthroline resulted in the substitution of one pyridine and one acetonitrile molecule affording [RuL(phen)(CH(3)CN)](PF(6))(2) (5) as a mixture of two isomers. Reaction of 1,2-bis(diphenylphosphino)ethane (dppe) and 1 gave [RuL(dppe)(CH(3)CN)(2)](PF(6))(2) (7), in which two pyridines were substituted by a dppe ligand trans to two NHC groups. In contrast, reactions of 1 with ethane-1,2-diamine, propane-1,3-diamine and 3,5-dimethyl-1H-pyrazole led to the substitution of acetonitrile and subsequent N-H addition of the C≡N bond of the coordinated acetonitrile yielding [RuL(ethane-1,2-diamine)(N-(2-aminoethyl)acetimidamide)](PF(6))(2) (8), [RuL(propane-1,3-diamine)(N-(3-aminopropyl)acetimidamide)](PF(6))(2) (9) and RuL(1-(3,5-dimethyl-1H-pyrazol-1-yl)ethanimine)(CH(3)CN)](PF(6))(2) (10), respectively.  相似文献   

16.
The reactions of the 16e half-sandwich complex (p-cymene)Ru(S(2)C(2)B(10)H(10)) (Ru16e) with 1,4-diethynylbenzene (L1), 3',6-diethynyl-1,1'-binaphthyl-2,7'-diyl diacetate (L2), 2-bromo-5-ethynylthiophene (L3) and 2,5-diethynylthiophene (L4) lead to 18e mononuclear complexes (p-cymene)Ru(S(2)C(2)B(10)H(9))(H(2)CCPhC≡CH) (1), (p-cymene)Ru(S(2)C(2)B(10)H(9))[H(2)CC(C(24)H(16)O(4))C≡CH] (2), (p-cymene)Ru(S(2)C(2)B(10)H(9)) [H(2)CC(C(4)H(2)S)Br] (3) and (p-cymene)Ru(S(2)C(2)B(10)H(9)) [H(2)CC(C(4)H(2)S)C≡CH] (4), respectively. In all of them, metal-induced B-H activation has occurred, which leads to a stable Ru-B bond, and the structures take a cisoid arrangement. Only in the case of L4, the binuclear complexes [(p-cymene)Ru(S(2)C(2)B(10)H(9))](2)[H(2)CC(C(4)H(2)S)CCH(2)] (5a and 5b) are observed, which are conformational isomers generated by the differing orientations of the p-cymene unit. 4 can be readily converted to the complex (p-cymene)Ru(S(2)C(2)B(10)H(9))[H(2)CC(C(4)H(2)S)COCH(3)] (6) in the presence of silica and H(2)O. All of these products 1-6 were characterized by NMR, IR, elemental analysis and mass spectrometry. The structures of 1, 3, and 5a were also determined by single-crystal X-ray diffraction analysis.  相似文献   

17.
The metal-metal bond in [(PMe2Ph)4Pt2B10H10], from reaction of [PtCl2(PMe2Ph)2] or PMe2Ph with [(PMe2Ph)2PtB10H12], very readily, and readily reversibly, takes up atmospheric O2 to give the peroxidic dioxygen-dimetallaborane complex [(PMe2Ph)4(O2)Pt2B10H10], which has Pt-Pt 2.7143(3), Pt-O 2.141(4) and 2.151(4), and O-O 1.434(6)A. The {Pt2O2} bonding mode is fluxional. Compound irreversibly takes up CO to give the bridging-carbonyl-dimetallaborane complex [(PMe2Ph)4(CO)Pt2B10H10] which has a CO vector radial to the cluster, with Pt-Pt 2.7488(3), Pt-C 2.104(6) and 2.113(6), and C-O 1.163(6)A; CO readily displaces O2 from to give 3. SO2 similarly reacts with either or to give [(PMe2Ph)4(SO2)Pt2B10H10], which has tetrahedral sulfur, with Pt-Pt 2.8194(4), Pt-S 2.350(2) and 2.381(3), and S-O 1.470(8)A and 1.477(9)A.  相似文献   

18.
The first examples of vinylidene complexes of the cycloheptatrienyl tungsten system [W(C=CHR)(dppe)(η-C?H?)](+) (dppe = Ph?PCH?CH?PPh?; R = H, 3; Ph, 4; C?H?-4-Me, 5) have been synthesised by reaction of [WBr(dppe)(η-C?H?)], 1, with terminal alkynes HC≡CR; a one-pot synthesis of 1 from [WBr(CO)?(η-C?H?)] facilitates its use as a precursor. The X-ray structure of 4[PF?] reveals that the vinylidene ligand substituents lie in the pseudo mirror plane of the W(dppe)(η-C?H?) auxiliary (vertical orientation) with the phenyl group located syn to the cycloheptatrienyl ring. Variable temperature 1H NMR investigations on [W(C=CH?)(dppe)(η-C?H?)][PF?], 3, estimate the energy barrier to rotation about the W=C(α) bond as 62.5 ± 2 kJ mol?1; approximately 10 kJ mol?1 greater than for the molybdenum analogue. Deprotonation of 4 and 5 with KOBu(t) yields the alkynyls [W(C≡CR)(dppe)(η-C?H?)] (R = Ph, 6; C?H?-4-Me, 7) which undergo a reversible one-electron oxidation at a glassy carbon electrode in CH?Cl? with E(?) values approximately 0.12 V negative of Mo analogues. The 17-electron radicals [6](+) and [7](+) have been investigated by spectroelectrochemical IR, UV-visible and EPR methods. The electronic structures of representative vinylidene (3) and alkynyl (6) complexes have been investigated at the B3LYP/Def2-SVP level. In both cases, electronic structure is characterised by a frontier orbital with significant metal d(z2)character and this dominates the structural and spectroscopic properties of the system.  相似文献   

19.
Products of the reaction of nido-1,2-(CpRuH)(2)B(3)H(7), 1, and phenylacetylene demonstrate the ways in which cluster metal and main group fragments can combine with an alkyne. Observed at 22 degrees C are (a) reduction to mu-alkylidene Ru-B bridges (isomers nido-1,2-(CpRu)(2)(1,5-mu-C{Ph}Me)B(3)H(7), 2, and nido-1,2-(CpRu)(2)(1,5-mu-C{CH(2)Ph}H)B(3)H(7), 3), (b) reduction to exo-cluster alkyl substituents on boron (nido-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-B(3)H(6), 4), (c) cluster insertion with extrusion of a BH(2) fragment into an exo-cluster bridge (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-4-or-5-Ph-4,5-C(2)B(2)H(5), 5), (d) combined insertion with BH(2) extrusion and reduction (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-3-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(2)H(4), 6), (e) insertion and loss of borane with and without reduction (nido-1,2-(CpRu)(2)-5-Ph-4,5-C(2)B(2)H(7), 7, and isomers nido-1,2-(CpRu)(2)-3-CH(2)CH(2)Ph-4-(and-5-)Ph-C(2)B(2)H(6), 8 and 9), and (f) insertion and borane loss plus reduction (nido-1,2-(CpRu)(2)-3-(trans-CH=CHPh)-5-Ph-4,5-C(2)B(2)H(6), 10). Along with 7, 8, and 10, the reaction at 90 degrees C generates products of insertion and nido- to closo-cluster closure (closo-4-Ph-1,2-(CpRuH)(2)-4,6-C(2)B(2)H(3), 11, closo-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-5-Ph-7-CH(2)CH(2)Ph-4,5-C(2)B(3)H(2), 12, closo-1,2-(CpRuH)(2)-5-Ph-4,5-C(2)B(3)H(4), 13, and isomers closo-1,2-(CpRuH)(2)-3-and-7-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(3)H(3), 14 and 15). The clusters with an exo-cluster bridging BH(2) groups are shown to be intermediates by demonstrating that the major products 5 and 6 rearrange to 13 and convert to 14, respectively. 14 then isomerizes to 15, thus connecting low- and high-temperature products. Finally, all available information shows that the high reactivity of 1 with alkynes can be associated with the "extra" two Ru-H hydrides on the framework of 1 which are required to meet the nido-cluster electron count.  相似文献   

20.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号