首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is directed towards the synthesis of multifunctional nanoparticles composed of Fe(3)O(4)-Au nanocomposite cores and a porous silica shell (Fe(3)O(4)-Au/pSiO(2)), aimed at ensuring the stability, magnetic, and optical properties of magnetic-gold nanocomposite simultaneously. The prepared Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles are characterized by means of TEM, N(2) adsorption-desorption isotherms, FTIR, XRD, UV-vis, and VSM. Meanwhile, as an example of the applications, catalytic activity of the porous silica shell-encapsulated Fe(3)O(4)-Au nanoparticles is investigated by choosing a model reaction, reduction of o-nitroaniline to benzenediamine by NaBH(4). Due to the existence of porous silica shells, the reaction with Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles as a catalyst follows second-order kinetics with the rate constant (k) of about 0.0165 l mol(-1) s(-1), remarkably different from the first-order kinetics with the k of about 0.002 s(-1) for the reduction reaction with the core Fe(3)O(4)-Au nanoparticles as a catalyst.  相似文献   

2.
Accurate detection of cancer antigen 72-4 (CA72-4), a tumor-associated glycoprotein, is of great significance for gastric cancer diagnosis and immunotherapy monitoring. Modification of noble metal nanoparticles on transition metal dichalcogenides can significantly enhance functions, such as electron transport. Molybdenum disulfide gold nanoparticles nanocomposites (MoS2-Au NPs) were prepared in this study and a series of characterization studies were carried out. In addition, a label-free, highly sensitive electrochemical immunosensor molybdenum disulfide -Au nanoparticles/Glassy carbon electrode (MoS2-Au NPs/GCE) was also prepared and used for the detection of CA72-4. The electrochemical performance of the immunosensor was characterized by electrochemical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results indicated that better MoS2-Au NPs nanomaterials have been synthesized, and the prepared electrochemical immunosensor, MoS2-Au NPs/GCE, showed excellent electrochemical performance. The sensor exhibited high detection sensitivity under optimal conditions, including an incubation time of 30 min, an incubation temperature of 25 °C, and a pH of 7.0. The electrochemical immunosensor also had a low detection limit of 2.0 × 10?5 U/mL (S/N = 3) in a concentration range of 0.001–200 U/mL, with good selectivity, stability, and repeatability. In conclusion, this study provided a theoretical basis for the highly sensitive detection of tumor markers in clinical biological samples.  相似文献   

3.
Photoexcited semiconductor nanoparticles undergo charge equilibration when they are in contact with metal nanoparticles. Such a charge distribution has direct influence in dictating the energetics of the composite by shifting the Fermi level to more negative potentials. The transfer of electrons to Au nanoparticles has now been probed by exciting TiO(2) nanoparticles under steady-state and laser pulse excitation. Equilibration with the C(60)/C(60)(-) redox couple provides a means to determine the apparent Fermi level of the TiO(2)-Au composite system. The size-dependent shift in the apparent Fermi level of the TiO(2)-Au composite (20 mV for 8-nm diameter and 40 mV for 5-nm and 60 mV for 3-nm gold nanoparticles) shows the ability of Au nanoparticles to influence the energetics by improving the photoinduced charge separation. Isolation of individual charge-transfer steps from UV-excited TiO(2) --> Au --> C(60) has provided mechanistic and kinetic information on the role of metal in semiconductor-assisted photocatalysis and size-dependent catalytic activity of metal-semiconductor nanocomposites.  相似文献   

4.
先利用一步水热法制备了具有核壳结构的CdTe@C纳米线,然后以钛酸异丙酯(TIP)作为钛源对CdTe@C纳米线进行二氧化钛包覆,最后通过原位还原HAuCl4的方法将Au纳米粒子组装到CdTe@C@TiO2表面形成CdTe@C@TiO2-Au一维异质结纳米复合材料。用扫描电镜(SEM),X射线能谱(EDX),透射电镜(TEM),X射线衍射(XRD),X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)等对材料进行表征。探究了CdTe@C@TiO2-Au催化剂在模拟可见光下降解罗丹明B(RhB)的光催化性能。实验结果表明:不同催化剂对RhB的光降解率不一样,其效果依次为CdTe@C@TiO2-Au > CdTe@C@TiO2 > pure TiO2,其中CdTe@C@TiO2-Au能在270 min的模拟太阳光下对RhB的光降解率达95.3%,这主要得益于CdTe、碳层、TiO2和具有表面等离子效应的纳米Au的共同作用。  相似文献   

5.
We prepared thrombin-binding aptamer-conjugated gold nanoparticles (TBA-Au NPs) through a molecularly imprinted (MP) approach, which provide highly efficient inhibition activity toward the polymerization of fibrinogen. Au NPs (diameter, 13 nm), 15-mer thrombin-binding aptamer (TBA(15)) with different thymidine linkers, and 29-mer thrombin-binding aptamer (TBA(29)) with different thymidine linkers (Tn) in the presence of thrombin (Thr) as a template were used to prepare MP-Thr-TBA(15)/TBA(29)-Tn-Au NPs. Thrombin molecules were then removed from Au NPs surfaces by treating with 100 mM Tris-NaOH (pH ca. 13.0) to form MP-TBA(15)/TBA(29)-Tn-Au NPs. The length of the thymidine linkers and TBA density on Au NPs surfaces have strong impact on the orientation, flexibility, and stability of MP-TBA(15)/TBA(29)-Tn-Au NPs, leading to their stronger binding strength with thrombin. MP-TBA(15)/TBA(29)-T(15)-Au NPs (ca. 42 TBA(15) and 42 TBA(29) molecules per Au NP; 15-mer thymidine on aptamer terminal) provided the highest binding affinity toward thrombin with a dissociation constant of 5.2 × 10(-11) M. As a result, they had 8 times higher anticoagulant (inhibitory) potency relative to TBA(15)/TBA(29)-T(15)-Au NPs (prepared in the absence of thrombin). We further conducted thrombin clotting time (TCT) measurements in plasma samples and found that MP-TBA(15)/TBA(29)-T(15)-Au NPs had greater anticoagulation activity relative to four commercial drugs (heparin, argatroban, hirudin, and warfarin). In addition, we demonstrated that thrombin induced the formation of aggregates from MP-TBA(15)-T(15)-Au NPs and MP-TBA(29)-T(15)-Au NPs, thereby allowing the colorimetric detection of thrombin at the nanomolar level in serum samples. Our result demonstrates that our simple molecularly imprinted approach can be applied for preparing various functional nanomaterials to control enzyme activity and targeting important proteins.  相似文献   

6.
Green synthesis gaining a significant importance for the preparation of nanoparticles (NPs) and NPs-based biocomposites gained much attention in biological applications. In the current study, gold (Au) nanoparticles were prepared via green approach using cinnamon extract. The Au nanocomposite (NC) was prepared with MnO2 nanofiber mesh structure. The NC was characterized by XRD, SEM, FT-IR, EDX, UV–visible and DLS techniques. The MnO2 nanofibers diameter was in 10–25 nm range, which was arranged in a mesh form and Au NPs was combined with nanofibers randomly. The MnO2-Au NC antimicrobial activity was measured against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains. The antimicrobial activity of MnO2-Au NC was highly promising against tested microorganisms in comparison to control (ciprofloxacin, a standard drug). The antimicrobial activity of MnO2-Au NC was found in following order; > S. aureus > E. coli > P. aeruginosa with the zones inhibition of 22, 18 and 15 (mn), respectively. The MIC (minimum inhibitory concentration) values were 316, 342 and 231 (µg/mL) for E. coli, P. aeruginosa and S. aureus, respectively. In view of promising antimicrobial activity, the MnO2-Au NC prepared via green approach could have potential applications in medical field and future study can be engrossed on the biocompatibility evaluation of MnO2-Au NC using bioassays.  相似文献   

7.
Self-assembled monolayers (SAMs) of optically active Co(III) complexes ((S)-2/(R)-2) that contain (S)- or (R)-phenylalanine derivatives as a molecular recognition site were constructed on Au electrodes ((S)-2-Au/(R)-2-Au). Molecular recognition characteristics induced by the S and R configurations were investigated by measurements of electron-transfer reactions with horse heart cytochrome c (cyt c). The electrochemical studies indicate that the maximum current of cyt c reduction is obtained when the Au electrode is modified by 2 with a moderate coverage of approximately 4.0 x 10(-11) mol cm(-2). Since the Au electrode is not densely packed with the Co(III) units at this concentration, we conclude that the penetrative association process between cyt c and the Co(III) unit plays an important role in this electron-transfer system. The differences in the electron-transfer rates of (S)-2-Au and (R)-2-Au increase with increasing scan rates, a result indicating that the chiral ligand has an influence on the rate of association of the complexes with cyt c. 3-Au has a mixed monolayer composed of 2 and hexanethiol and exhibits electron-transfer behavior comparable to 2-Au. The difference in the association rates of (S)-3-Au and (R)-3-Au is larger than that between (S)-2-Au and (R)-2-Au, which indicates that the molecular recognition ability of 3-Au has been enhanced by filling the gap between molecules of 2 with hexanethiols. The differences in the oxidation rates of cyt c(II) between (S)-2-Au and (R)-2-Au and between (S)-3-Au and (R)-3-Au were larger than the differences in the rates of the reduction of cyt c(III); this suggests that the size of the heme crevice varies according to the oxidation state of cyt c.  相似文献   

8.
The dispersion of polymer-covered gold nanoparticles in high molecular weight (MW) polymer matrixes is reported. Complete particle dispersion was achieved for PS125-Au in the polystyrene (PS) matrixes studied (up to and including Mn = 80 000 g/mol). PS19-Au, on the other hand, exhibits complete dispersion in a low MW PS matrix (Mn = 2000 g/mol) but only partial dispersion in higher MW matrixes (up to 80 000 g/mol). Similarly, PEO45-Au is fully dispersed in a low MW poly(ethylene oxide) (PEO) matrix (Mn = 1000 g/mol) but only partially in a higher MW PEO matrix (Mn = 15 000 g/mol). Wetting of the polymer-Au brushes by the polymer matrix is associated with dispersibility. Theory predicts that, for dense polymer brushes, wetting is achieved when the MW of the polymer brush equals (and is greater than) that of the polymer matrix. The observed partial dispersion of the PS19-Au and PEO45-Au nanoparticles in matrixes whose MW is greater than the brush MW is attributable to the existence of a high volume fraction of voids within the brush. These voids arise from the unique geometry of the nanoparticle surface arising from the juxtaposed facets of the gold nanoparticle. PS125-Au brushes are wetted by PS matrixes whose degree of polymerization is larger than 125, probably because of their lower grafting density on the gold core or the high fraction of void volumes caused by the facets on the gold cores. Dispersion thus occurs when the matrix MW is greater than that of the brush.  相似文献   

9.
N-(3-Aminopropyl)-N'-methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2 nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized Au nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1x10(-4) M to 2x10(-3) M. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1x10(-4) M to 1x10(-3) M.  相似文献   

10.
Enzyme-mimicking artificial nanomaterials often termed nanozymes have broad applications in many fields, including biosensing, pollutant degradation and cancer diagnosis. Herein, we introduce a plasmonic gold nanoparticle-modified Mn3O4 nanozyme (Mn3O4-Au). Visible or near infrared light excitation into the plasmonic absorption band of the surface-bound gold nanoparticles enhances the catalytic oxidation of tetramethylbenzidine (TMB). The mechanism of light-enhanced peroxidase activity is proposed based on the Mn3O4 conduction band mediated hot electron transfer from photoexcited gold nanoparticles to H2O2 which undergoes further oxygen-oxygen bond cleavage to yield hydroxyl radical. The surface decoration of plasmonic gold nanoparticles endows Mn3O4-Au to be a light-regulated nanozyme.  相似文献   

11.
《Analytical letters》2012,45(13):2111-2121
A functional composite of Fe3O4@SiO2-Au was prepared and used for latent fingerprint detection. Material characterization results confirmed the successful fabrication of the Fe3O4@SiO2-Au composite. In latent fingerprint detection, the Fe3O4@SiO2-Au composite provides a better performance than commercial copper powder and also gold nanoparticles. More importantly, the Fe3O4@SiO2-Au composite can be used in both powder and suspension forms, and also for common surfaces including glass, polyethylene bags, and paper. The favorable pH range (2.0–5.0) for the compositein finger marks detection is much wider than that of the traditional multi-metal deposition method (pH ranging from 2.0 to 3.0). The mechanism for the Fe3O4@SiO2-Au composite in fingerprint detection was explored and discussed. This study provides a favorable choice for a one-step deposition method for latent fingerprint detection.  相似文献   

12.
Over bimetallic Au/Cu catalyst supported on magnetic Fe3O4 nanoparticles, water-mediated bromamine acid could be selectively converted into 4,4'-diamino-1,1'-dianthraquinonyl-3,3'-disulfonic acid (DAS) with a yield of 88.67%. The magnetic catalyst could be readily separated and reused.  相似文献   

13.
Near-infrared (NIR) femtosecond laser irradiation of metallodielectric core-shell silica-gold (SiO(2)-Au) nanoparticles can induce extreme local heating prior to the rapid dissipation of energy caused by the large surface area/volume ratio of nanometer-scale objects. At low pulse intensities, the dielectric silica core is removed, leaving an incomplete gold shell behind. The gold shells with water inside and out still efficiently absorb NIR light from subsequent pulses, showing that a complete shell is not necessary for absorption. At higher pulse intensities, the gold shell itself is melted and disrupted, leading to smaller, approximately 20-nm gold nanoparticles. Spectroscopic measurements show that this disruption is accompanied by optical hole burning of the peak at 730 nm and formation of a new peak at 530 nm. The silica removal and gold shell disruption confirms significant temperature rise of the core-shall nanoparticle. However, the entire process leads to minimal heating of the bulk solution due to the low net energy input.  相似文献   

14.
通过偶联修饰的方法合成了水溶性磺化杯芳烃修饰的金纳米粒, 并研了其对多环芳烃的比色检测. 结果表明, 磺化杯芳烃修饰的金纳米粒对蒽具有良好的识别选择性. 该比色探针对蒽的检测限可达到2×10-6 mol/L. 这种比色传感器能够实现现场原位检测.  相似文献   

15.
A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe3O4-Au nanoparticles, which was first employed to capture AFP antigens to form Fe3O4-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe3O4-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe3O4-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL−1 with a detection limit of 0.2 pg mL−1. The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application.  相似文献   

16.
Pt-Au bimetallic nanoparticles have been synthesized by the polyol method and stabilized with poly(vinylpyrrolidone) (PVP), modifying the temperature of synthesis. Interesting structure changes were observed in the nanoparticles as the temperature was varied. At lower temperatures no bimetallic nanoparticles were detected, but as the temperature increased bimetallic nanoparticles started to appear, commonly obtaining core-shell nanoparticles, always covered by the polymer. This originates the modification of the optical response of the system in the UV-visible region. An absorption peak centered at 520 nm at low temperatures was observed (100-110 degrees C); at higher temperatures (130-170 degrees C) there were non detectable absorption peaks, and finally at the two highest temperatures (180-190 degrees C) the reappearance of an absorption feature centered at 510 nm was noticed. These UV-visible results indirectly imply the composition of the surface of the particle. The structure of the particles has been determined using transmission electron microscopy and high-angle annular dark field (HAADF), the latter being a powerful technique to determine the structural composition of the particles and allowing a direct correlation of the optical response with their structural composition. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies were also performed on the samples and their results support the idea of a Pt(core)-Au(shell) structure with the elements segregated from each other. The combination of these experimental techniques with calculated UV-vis absorption spectra allowed, in a reliable way, the elucidation of the nanoparticles structure and elemental distribution.  相似文献   

17.
Atomic Layer Deposition (ALD) precise controlling ultra-thin platinum (Pt) modified Graphite carbon nitride (g-C3N4) photocatalysts, which had been doped with gold nanoparticles (Au NPs) by photodeposition, were successfully synthesized. The experimental results showed that precise regulation of platinum decorated C3N4-Au(C3N4-Au/nPt (n is the number of Pt ALD cycles, 1 Å per cycle)) exhibited excellent photocatalytic degradation ability for Rhodamine B (RhB). Under simulated sunlight irradiation, the degradation rate of 10 mg/L RhB(100 mL) by 1.5 mg C3N4-Au/10Pt catalysts was 95.8% within 60 min that is much better than other photocatalysts for the degradation of RhB. The efficient degradation mechanism of RhB by C3N4-Au/10Pt photocatalysts was studied and the experiments demonstrated the ·O2 as main active species played an important role in the photocatalytic process. Local surface plasmon resonance (LSPR) of Au NPs and Schottky barrier between Pt clusters and g-C3N4 may be the reasons for enhanced C3N4-Au/10Pt photocatalytic performances. Furthermore, the successive catalytic cycles revealed the excellent stability of C3N4-Au/10Pt photocatalyst.  相似文献   

18.
We report on the use of dopamine (DA) as a robust molecular anchor to link functional molecules to the iron oxide shell of magnetic nanoparticles. Using nitrilotriacetic acid (NTA) as the functional molecule, we created a system with an M/Fe2O3-DA-NTA (M = Co or SmCo5.2) nanostructure, which possesses high stability and specificity for separating histidine-tagged proteins. The well-established biocompatibility of iron oxide and the robust covalent bonds between DA and Fe2O3 render this strategy attractive for constructing biofunctional magnetic nanoparticles containing iron oxide.  相似文献   

19.
In the present study, a composite material consisting of polypyrrole nanowires (PPyNWs) and platinum nanoparticles (PtNPs) has been developed by an all-electrochemical approach and proved to be highly effective for electrochemical determination of dopamine (DA). PPyNWs are electropolymerized by a template-free method, and PtNPs are subsequently electrodeposited by cyclic voltammetry. Chemical characterization by X-ray photoelectron spectroscopy showed the effective PtNP immobilization on polymer nanowires discriminating at the same time Pt species deposited and revealing the occurrence of polypyrrole-PtNP interaction. The morphology of the composite material was characterized using scanning electron microscopy that showed spherical Pt nanoparticles well distributed within PPy-NW network. DA detection was performed by differential pulse voltammetry technique obtaining satisfactory performances in terms of linear range (1–77 μM), sensitivity, reproducibility (RSD 2.7%), and detection limit (0.6 μM). The electrocatalytic role of PtNPs in DA electroxidation process is clearly demonstrated by the comparison with PPyNWs only. Moreover, no significant response is observed in the presence of common interference as ascorbic acid and uric acid, which may coexist with DA in biological fluids, demonstrating a good selectivity toward DA. Moreover, DA was detected in human serum samples spiked obtaining a satisfactory recovery of 94%. A synergistic effect involving both PtNPs and PPyNWs is invoked for explaining the observed electrocatalytic activity.  相似文献   

20.
TiO2 -Au aerogels containing different amounts of gold nanoparticles of different sizes (5 and 16 nm) were successfully synthesized using a sol-gel procedure, and were tested for salicylic acid photodegradation under UV irradiation. The structure and morphology of the obtained materials were investigated using X-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption measurements. UV-Vis spectroscopy was used to study the optical properties. The effects of the gold nanoparticles on the TiO2 crystallization process were twofold, as follows: (i) the number of crystallized zones was strongly related to the concentration of the gold nanoparticles, and (ii) the smaller gold particles increased the time taken for the crystallization of the samples. It was found that the noble metal-doped samples exhibited higher degradation rates compared with bare titania. It was found that the most active photocatalyst in each studied system was the sample with the highest concentration of gold nanoparticles. Additionally, the highest degradation rate value was obtained with the smallest Au nanoparticles (46.4 10-3 μmol/(L·s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号