首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The electrochemical properties of the pore wall of track-etched mica membranes are modified (a) by covalent binding of positively and negatively charged groups, and (b) by adsorption of cationic and amonic polyelectrolytes. The electrochemical properties of the pore wall are characterized by measurements of membrane potential, electrical conductivity and streaming potential.By these methods it is possible to change the sign of the surface charge density of the pore wall and to increase its absolute value by a factor of about 30 compared with that of the unmodified pore wall. Changes of electrochemical properties of the pore wall are desirable in studies of negative osmosis and incongruent electrolyte transport in membranes with known pore structure.  相似文献   

2.
Interpolymer films of poly-ethylene and styrene-divinyl benzene copolymer were subjected to chlorosulfonation or chloromethylation then amination for the preparation of homogeneous type of cation- or anion-exchange membranes, respectively. Heterogeneous types of ion-exchange membranes were prepared from polyvinyl chloride (PVC) as binder and ion-exchange resin powder in tetrahydrofuran solvent. Membrane potential and conductance measurements have been carried out in NaCl(aq), CuCl2(aq) and AlCl3(aq) solutions at different concentrations to investigate the relationship between concentration of fixed charges and electrochemical properties of these membranes. On the basis of the micro-heterogeneous model, describing the micro-structure of the membrane material, the counter-ion diffusion coefficients were estimated. Membrane conductance data, along with values of concentration of fixed ionic site in the membrane, were used for the estimation of the tortuosity factor and salt permeability employing non-equilibrium thermodynamic principles. It was concluded that electrochemical transport properties of homogeneous type of ion-exchange membranes are superior to those for heterogeneous type of ion-exchange membranes. However, both types of membranes are suitable for electrodriven separation of mono-, bi- and tri-valent electrolytes.  相似文献   

3.
Highly charged cation permeable composite membranes were prepared by blending of sulfonated poly(ether sulfone) (SPES) with sulfonated poly(ether ether ketone) (SPEEK) in 0 to 90% weight ratio, to adjust the hydrophobic properties and ion selective nature. Extent of sulfonation was confirmed by 1H NMR and ion exchange capacity and degree of sulfonation depending on blending composition. These membranes were characterized as a function of weight fraction of SPEEK by recording ion-exchange capacity, water uptake, thermogravimetric analysis, membrane conductivity and membrane potential in equilibration with different electrolytic solutions. Membrane permselectivity and solute flux were estimated using these data on the basis of non-equilibrium thermodynamic principles and for observing the selectivity of different membranes for mono- or bivalent counter-ions. It was observed that relative selectivity for monovalent in comparison to bivalent counter-ions were increased with the decrease in SPEEK content in the composite membrane matrix. The range of SPEEK content in the blend from 60 to 80% appears the most suitable for the selective separation of monovalent ions from bivalent ions. Furthermore, highly charged nature and stabilities of these membranes extend their applications for the electro-assisted separations of similarly charged ions as well as other electro-membrane processes.  相似文献   

4.
The membrane potential across a composite bipolar membrane (CBM) composed of a cation-exchange membrane with an anion-exchange membrane is theoretically and experimentally analyzed for LiCl ethanol-water solutions. The theoretical approach is based on an extension of the Donnan equilibrium and the Nernst-Planck equation of monopolar charged membranes for the case of two ion-exchange layers by considering the effect of electrolyte ion pairing in the external solution. The experimental results show that the effective membrane charge densities of the two ion-exchange layers will become smaller than those which are separately estimated for each layer. We have introduced a contact factor, zeta, into the theoretical approach to clarify this phenomenon in this study, and the theoretical predictions were in good agreement with the experimental data. The membrane potential measurements show that CBM has the characteristics of a bipolar membrane and can significantly contribute to a better electrochemical characterization of the CBMs. Copyright 1999 Academic Press.  相似文献   

5.
Chitosan was functionalized either by introducing a phosphonic acid group or by quaternization of existing primary ammonium groups in order to make it a water-soluble material. Functionalized chitosans and poly(vinyl alcohol) (PVA)-based nanoporous charged membranes were prepared in aqueous media and gelated in methanol at 10 degrees C to tailor their pore structure. These membranes were extensively characterized for their physicochemical, electrochemical, and permeation characteristics using FTIR, TGA, DSC, water content, ion-exchange capacity, ionic transport properties, and membrane permeability studies. N-Methylene phosphonic chitosan (NMPC)/PVA-based membranes exhibited mild cation selectivity and quaternized chitosan (QC)/PVA composite membranes had mild anion selectivity, while a blend of NMPC-QC/PVA membranes exhibited weak cation selectivity because of formation of zwitterionic structure. Viscosity measurements and interaction studies for individual and mixed solutions of NMPC and QC were carried out for the prediction of charge interactions between -PO3H2 and -N+(CH3)3 groups and effect on molecular weight due to functionalization. Elaborate electrochemical and permeation experiments were conducted in order to predict suitability of these membranes for the separation of mono- and bivalent electrolytes based on their hydrated ionic radius, and it was found that among all the synthesized membranes, PC/QC-30 had the highest relative permeability, which may extend its suitability for electrolyte separations. Observations were correlated with equivalent pore radius of the different membranes as estimated by membrane permeability measurements.  相似文献   

6.
Organic-inorganic composite membranes based on poly(vinyl alcohol)/SiO(2) were prepared via an aqueous dispersion polymerization route and anion-exchange groups were introduced in the membrane matrix by the chemical grafting of 4-vinylpyridine with the desired content. These membranes were extensively characterized for their surface morphology, thermal stability, water content, and surface-charge properties using SEM, TEM, FTIR, TGA, water uptake, and ion-exchange capacity measurements. Counterion transport numbers across these membranes were estimated from membrane potential data. Membrane conductance measurements were also performed and these data were used for the estimation of values of counterion diffusion coefficients in the membrane phase. Physicochemical and electrochemical properties of these membranes and equivalent pore radius (estimated from electroosmotic flux measurements) were found to be highly dependent on the 4-vinylpyridine (4-VP) content in the membrane phase. It was also observed that for better selectivity and membrane conductivity of anion-exchange membranes complete optimization of the loading of 4-VP in the membrane phase is necessary. Furthermore, among these, membrane with 25% loading with 4-VP exhibited very good selectivity, water content, and ion-exchange capacity along with moderate membrane conductivity, which may be used for their application in electro-driven separation at elevated temperatures or for other electrochemical processes.  相似文献   

7.
The preparation of polystyrene-based titanium phosphate membranes at different pressures with varying amounts of material has been explained. The membrane potentials of inorganic membranes were measured with uni-univalent electrolytes (KCl, NaCl and LiCl) solution using saturated calomel electrodes (SCEs). The TMS method was used for the evaluation of the effective fixed charge density of these membranes with increasing pressure, and the surface charge density of membrane appeared to be increased due to gradually diminution in surface opening channels. The order of surface charge density for electrolytes used is found to be KCl > NaCl > LiCl. In addition to the effective fixed charge density, distribution coefficient, transport numbers, charge effectiveness and other related parameters were calculated for characterizing the ion exchange membranes by utilizing the TMS method. The theoretical prediction is consistent well with the experimental data. The SEM of these membranes at various pressures has been presented.  相似文献   

8.
Resistance properties of systems consisting of H2SO4 solutions and composite ceramic membranes modified by amphoteric ion-exchange material—hydrated zirconium dioxide (HZD)—are investigated by impedance spectroscopy. Transport numbers of sulfate ions through these membranes are calculated, and their values reach 0.86–0.92 as a function of the amount of HZD inserted into the membrane. Values of the transport numbers, estimated from impedance measurements, are found to be in good agreement with data obtained in investigations of sulfate transport at constant current under conditions in which the membrane charge is determined only by anions.  相似文献   

9.
Coating a layer onto a support membrane can serve as a means of surface functionalization of membranes. Frequently, this procedure is a two-step process. In this paper, we describe a concept of membrane preparation in which a coating layer forms in situ onto a support membrane in one step by a co-extrusion process. Our aim is to apply a thin ion exchange layer (sulfonated polyethersulfone, SPES) onto a polysulfone support. The mechanical stability and adhesion of the ion-exchange material to the hydrophobic support membrane (polysulfone) has been studied by a systematic approach of initial proof-of-principle experiments, followed by single layer and double-layer flat sheet casting. Critical parameters quantified by the latter experiments are translated into the co-extrusion spinning process. The composite hollow fiber membrane has low flux as a supported liquid membrane for the copper removal due to the low ion exchange capacity of the SPES. The coating layer of the composite membrane is porous as indicated by gas pair selectivity close to unity. However, our new composite membrane has good nanofiltration properties: it passes mono and bivalent inorganic salts but rejects larger charged organic molecules. The experimental work demonstrates that co-extrusion can be a viable process to continuously prepare surface tailored hollow fiber membranes in a one-step process, even if the support and coating material differ significantly in hydrophilicity.  相似文献   

10.
荷电膜的膜电位研究进展   总被引:1,自引:0,他引:1  
张亚萍  徐铜文 《化学进展》2006,18(12):1592-1598
膜电位的测定是表征荷电膜的传递现象的重要参数之一。本文简要介绍了膜电位理论基础,包括T. M. S.理论和不可逆热力学理论。分别阐述了关于离子交换膜、双极膜、两性膜以及复合膜的膜电位的最新进展,并提出今后的发展方向。  相似文献   

11.
In this work,we adopt a new tobramycin(TOB)-dopamine coating system to endow thin film composite membranes with excellent antifouling and antimicrobial properties.Combining the hydrophilic and antibiofouling properties of both TOB and polydopamine,the TOB-dopamine modified membrane exhibits improved antifouling and antimicrobial properties compared with the conventional dopamine modified and unmodified membranes.The TOB-dopamine system has two advantages over the conventional modification with dopamine and tris buffer solution.First,TOB-dopamine modification is more efficient than the conventional dopamine modification due to the accelerating effect of TOB on dopamine polymerization.Second,the TOB-dopamine modified membranes exhibit better hydrophilicity,and enhanced antifouling and antimicrobial properties than the conventional dopamine modified membrane.Beyond engineering membranes,the proposed TOB-dopamine system can also be extended for wider surface hydrophilic and antimicrobial modifications.  相似文献   

12.
Property–structure correlation in proton exchange membranes, prepared by simultaneous radiation grafting of styrene into FEP films and their subsequent sulfonation, was evaluated. The distribution of ionic sites across the membrane matrix was determined by microprobe measurements. The properties of these membranes, such as ion exchange capacity, swelling and ionic resistivity as a function of the degree of grafting, were studied. The thermal stability of membranes was studied using thermogravimetric analysis and ion exchange capacity measurements. Membranes undergo considerable structural changes in terms of the increase in the ionic content, enhanced hydrophilicity and decrease in crystallinity with the increasing degree of grafting. A correlation between some physical properties and stuctural changes occurring during the membrane preparation was established.  相似文献   

13.
The effect of organic surfactants (1,4-butynediol, benzoic and disulfonaphthalene acids) on electrochemical properties of heterogeneous ion-exchange membranes MK-40 and MA-40 is studied. The surfactants effect the membrane properties both under equilibrium conditions and, especially, in the electric field, suggesting that they are involved in both the exchange sorption and the electrotransport. The mechanism of their effect on the anionite membrane is considered. It is shown that bipolar boundaries can arise in the membrane, promoting water dissociation and transport of hydrogen and hydroxyl ions in the field direction.  相似文献   

14.
Protein channels on the biofilm conditionally manipulate ion transport via regulating the distribution of charge residues, making analogous processes on artificial membranes a hot spot and challenge. Here, we employ metal–organic frameworks (MOFs) membrane with charge-adjustable subnano-channel to selectively govern ion transport. Various valent ions are binded with crown ethers embedded in the MOF cavity, which act as charged guest to regulate the channels’ charge state from the negativity to positivity. Compared with the negatively charged channel, the positive counterpart obviously enhances Li+/Mg2+ selectivity, which benefit from the reinforcement of the electrostatic repulsion between ions and the channel. Meanwhile, theoretical calculations reveal that Mg2+ transport through the more positively charged channel needed to overcome higher entrance energy barrier than that of Li+. This work provides a subtle strategy for ion-selective transport upon regulating the charge state of insulating membrane, which paves the way for the application like seawater desalination and lithium extraction from salt lakes.  相似文献   

15.
聚合物离子交换膜有多种制备方法,其中高分子材料辐射引发接枝功能性单体是一种文献中屡见报道且简单可行的方法.通过在不同聚合物基体上接枝各种类型的单体,可以改变接枝膜的电化学性能、物理化学等性能.丈中详细介绍了不同的高分子基材辐射接枝各类单体制备聚合物离子交换膜的研究现状.  相似文献   

16.
This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.  相似文献   

17.
The water transfer behaviour of Selemion CMV, AMV and DMV membranes (Asahi Glass, Japan) has been studied in the vanadium redox cell, as was the water transfer across Nafion 117 membrane (E.I. Du Pont, USA). The earlier water transport studies of a variety of commercial ion exchange membranes and non-ionic separators in the vanadium redox cell have shown that the net water transport through anion exchange membranes and non-ionic separators in the vanadium redox cell is from the positive half cell (+ve) to the negative half cell (−ve), while for cation exchange membranes the net water transport is in the opposite direction. In the present study, it was found that a significant amount of water is transferred across cation exchange membranes from the −ve vanadium half cell electrolyte to the +ve vanadium half cell electrolyte by the hydration shells of V2+ and V3+ ions which carry a large amount of water and can easily permeate through cation exchange membranes due to their relatively high charge numbers. The net amount of water of hydration which is transferred across anion exchange membranes from the −ve half cell electrolyte, however, is almost equal to the net amount of water of hydration which is transferred from the +ve half cell electrolyte. Thus, the net amount of water which is transferred across anion exchange membranes is in the same direction as the osmotic water transfer.  相似文献   

18.
Surface modification methods are applied to alter interfacial phenomena and improve ion transport through membranes. In this work we present a novel method for tailoring the surface of cation-exchange membranes based on the deposition of thin microgel monolayers. The charge of such layers exerts a strong influence on the monovalent-ion-selectivity, and this is reflected in the electrochemical impedance responses. Membranes coated with uncharged microgels show similar behavior to that of unmodified ones, with impedance spectra dominated by low-frequency diffusional arcs. However, membranes modified with positively charged microgels exhibit an increased resistance due to the hindered transport of cations through the modification. An additional high-frequency capacitive arc is obtained with the monovalent-ion-selective membranes, which is attributed to concentration polarization effects at the membrane/modification interface. The characteristic frequency of this arc decreases with the valency of the ion, thus proving that multivalent ions pass through the modification layer at rates much slower than monovalent ones. Accordingly, electrochemical impedance spectroscopy has been used to feature monovalent-ion-selective properties of layered membranes.  相似文献   

19.
Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.  相似文献   

20.
A stable, long-lived membrane sensor for dissolved oxygen is reported. A conventional amperometric Clark cell was augmented through the addition of an ion-exchange carrier to the membrane to permit export of hydroxide in exchange for chloride in the sample solution. The choice of a suitable carrier was determined from two types of supramolecular principles: (1) the characteristic flux as a function of the magnitude of the two-phase ion exchange equilibrium constant (Kex) for an antiport transport cycle as derived for biomimetic ion transport studies and (2) the use of guanidinium ion exchangers to provide hydrogen-bonding in addition to electrostatic recognition for enhanced hydroxide/chloride selectivity. The membrane of the sensor supports the anticipated ion-exchange as it continues to provide stable current beyond the point where the initial internal chloride would be entirely consumed. As a consequence, stable and responsive sensors can be fabricated using planar techniques such as screen printing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号