首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of dialkylcobalt(III) complexes containing the 2,2′-bipyridine ligand have been isolated as products of the reactions of tris(2,4-pentanedionato)cobalt(III) (Co(acac)3), 2,2′-bipyridine (bpy), and alkylaluminums in diethyl ether. When high Al/Co ratios (Al/Co > 7) were used, ionic complexes, dialkylbis(2,2′-bipyridine)cobalt(III) tetraalkylaluminates, [CoR2(bpy)2][AlR4] (R = CH3, C2H5) were obtained exclusively. Similar reactions at lower ratios (Al/Co - 1.5–2.0) gave neutral CoR2(acac)(bpy) (R = CH3, C2H5, n-C3H7, i-C3H7). These compounds were characterized by IR and NMR spectroscopy as well as by elemental analysis and chemical reactions. Molecular structural analysis of the cationic dimethylcobalt compound confirmed the cis configuration. Stepwise formation of [CoR2(bpy)2][AlR4] from Co(acac)3 is postulated and the mechanism of the alkylation reaction is discussed.  相似文献   

2.
Two precursor species have been identified as responsible for the catalyzing effect of the trichloroethanoate (TCE) anion on the formation of tris(2,4-pentanedionato)chromium(III), Cr(acac)3. The first one is the green intermediate species (GIS) identified as tetrahydroxodecakis-μs-trichloroethanoato-trichloroethanoato-tetraaquopentachro-mium(III), Cr5(OH)4(CCl3COO)11(H2)4. This appears to be the first pentanuclear species reported among the polynuclear alkanoato metal complexes. It reacts at a rapid rate with the 2,4-penaanedtonate, acac, anion to produce a second precursor, the violet-green intermediate species (VGIS) identified as bis(2,4-pentanedionato)-trichloroethanoato-aquochromium(III), Cr(C5H7O2)2(CCl3COO)(H2O). This is attacked by the remainigg acac anion to ultimaelly produce the Cr(acac)3. Thus the effect of the TCE anion in facilitating the formation of Cr(acac)3 is through the ligand coordination catalytic mechanisms.  相似文献   

3.
The synthesis of phosphono- and phosphonylmethyl-triorganostannanes R3SnCH2P(O)(OR′)R′′ (R′′  OR′, C6H5) via an Arbuzov reaction of R3SnCH2I with P(OR′)3 or C6H5P(OR′)2 (R′′  CH3, C2H5) is described. The new compounds have been studied with regard to their behaviour towards electrophilic (Br2, HCl, HgBr2) and nucleophilic (NaOH, LiAlH4, LiR) agents. Their reaction with chlorophenylphosphines followed by reduction with LiAlH4 yields the unsymmetrical methylenebis(phosphines) C6H5P(R)CH2PH2 (R  H, C6H5). The title compounds add to the carbonyl group of aldehydes and the CN bond of phenylisocyanate.  相似文献   

4.
The title compound [Co(C5H7O2)2(C13H13P)(CH4O)]PF6·H2O, (I), which was converted from trans‐[Co(acac)2(PMePh2)(H2O)]PF6 (acac is pentane‐2,4‐dionato) by recrystallization from aqueous methanol, has been confirmed as have a coordinated methanol ligand. The molecular structure of the complex cation, trans‐[Co(acac)2(PMePh2)(MeOH)]+, is similar to that of the above aqua complex found in the ClO4 salt [Kashiwabara et al. (1995). Bull. Chem. Soc. Jpn, 68 , 883–888]. The Co—O bond length for the coordinated methanol is 2.059 (3) Å. There is an intermolecular hydrogen bond between the OH group of the coordinated methanol and one of the O atoms of the acac ligands in an adjacent complex cation [O5?O3′ = 2.914 (4) Å], giving a centrosymmetric dimeric dicationic complex.  相似文献   

5.
The novel complexes CpFe(CO)(COR)P(C6H5)2NR'R* with Cp = C5H5,C9H7 (indenyl); R = CH3, C2H5, CH(CH3)2, CH2C6H5;R` = H, CH3, C2H5, CH2C6H5 and R* = (S)-CH(CH3)(C6H5), have been synthesized by reaction of CpFe(CO)2R wiht P(C6H5)2NR`R* and characterized analytically as well as spectroscopically. The pairs of diastereoisomers RS/SS have been separated by preparative liquid chromatography and fractional crystallization, respectively. The optically pure complexes (+)436- und ()436-CpFe(CO)(COR)P(C6H5)2NR`R* are configurationally stable at room temperature. At higher temperatures they equilibrate with CpFe(CO)2R and epimerize with respect to the Fe configuration.  相似文献   

6.
The [Fe443-C(CH3)C(R)C(R′)(μ-CO)2(CO)9] cluster anions have been obtained by the reaction of the Fe43-CCH3)(CO)12 anion with RCCR alkynes in boiling 3-pentanone. In the cases in which R = R′ = C6H5 or CH3, and R = H, R′ = C6H5 or t-Bu, only one isomer has been detected. In the case in which R = CH3, and R′ = C6H5, two isomers with the C(CH3)C(C6H5)C(CH3) and C(CH3)C(CH3)C(C6H5) fragments have been identified.  相似文献   

7.
Mass spectra of substituted benchrotrenyls RC6H5Cr(CO)3 where R?H, F, CI, I, CH3, OCH3, COOCH3, C2H5, N(CH3)2, NH2, C6H5, C(CH3)3, p-C6H4NH2, CH2C6H5, CH2CH2C6H5), 1,3,5-(CH3)3C6H3Cr(CO)3 and 1,2,3,5-(CH3)4C6H2Cr(CO)3 have been studied. It has been found that for monosubstituted benchrotrenyls there is a linear dependence of the parameter log [Cr]+/[RC6H5Cr]+) on the number of degrees of freedom of the [RC6H5Cr]+ ion. Decarbonylation of the molecular ions is not affected by the nature of the substituent R. The results are interpreted in terms of the quasi-equilibrium theory of mass spectra.  相似文献   

8.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

9.
The 31P NMR spectra of C6H5XCr(CO)2P(C6H5)3 (X = H, CH3, OCH3, N(CH3)2, COOCH3) (I), p-C6H4X2Cr(CO)2P(C6H5)3 (X = COOCH3)(II) and C6H3X3Cr(CO)2P(C6H5)3 (X = CH3) (III) complexes in neutral and acidic media were investigated. The protonation of complexes I and III in trifluoroacetic acid results in the greater upfield shielding of 31P{1H} signal. In this case the complexes I (X = H, CH3, OCH3) are completely protonated at the metal, complex I (X = COOCH3)is partially protonated, while no protonation occurs in the case of complex II.Temperature-dependence of the 31P{1H} NMR spectra was investigated for complexes I (X = H, OCH3) in a 1/10 mixture of trifluoroacetic acid and toluene and for complexes I (X = COOCH3) and II in trifluoroacetic acid. The degree of protonation was found to increase with decreasing temperature.  相似文献   

10.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

11.
Reactions of NiMe2(bipy), (bipy = 2,2'-bipyridine), NiEt2(bipy), FeEt2(bipy)2, CoMe(bipy)2, CoEt(bipy)2, NiEt(acac)(PPh3) (acac = acetylacetonato, PPh3 = triphenylphosphine), CoMe(PPh3)3, CoEt2(acac)(PPhMe2)2, CrMeCl2(THF)3 and RhMe(PPh3)3 with molecular deuterium have been studied. Reactions of the methyltransition-metal complexes with D2 gave only CH3D and CH4, whereas reactions of the ethyltransition-metal complexes with D2 gave C2D6, C2HD5, C2H2D4, C2H3D3, and C2H4D2 in addition to C2H5D and C2H6. A mechanism comprised of the oxidative addition of D2, β-elimination and its reverse process, exchange of a hydrido with a deuterido ligand and reductive elimination of the deuterido and ethyl ligands, is proposed to account for the formation of the extensively deuterated ethanes. Hydrogen atoms of 2,2'-bipyridine ligand of the alkyltransition-metal complexes also undergo exchange with D2, predominantly at the 4- and 6-positions.  相似文献   

12.
Reactions of reactive cyclopentadienyliron complexes C5H5Fe(CO)2I, [C5H5Fe(CO)2THF]BF4, [C5H5Fe(CO)((CH3)2S)2]BF4 and [C5H5Fe(p-(CH3)2C6H4)]PF6 with P(OR)3 as ligands (R = CH3, C2H5, i-C3H7 and C6H5) lead to the formation of the complex compounds C5H5Fe(CO)2?n(P(OR)3)nI and [C5H5Fe(CO)3?n(P(OR)3)n]X (n = 1, 2 and n = 1–3, X = BF4, PF6). Spectroscopic investigations (IR, 1H, 13C and 31P NMR) indicate an increase of electron density on the central metal with increasing substitution of CO groups by P(OR)3 ligands. The stability of the compounds increase in the same way.  相似文献   

13.
2,4-Bismethylthio-1,3,2,4-dithiadiphosphetane 2,4- disulfide, IIa, is prepared from 0,0-dimethyldithiophosphoric acid, Ia, and P4S10 at 160°C. 2,4-Bis(4-phenoxyphenyl)-1,3,2,4- dithiadiphsophetane 2,4-disulfide, IIc, and 2,4-bis(4-phenylthiolophenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, IId, are prepared at l60°C from P4 S10 and diphenylether and diphenylsulfides, respectively. Carboxylic acids RCOOH(R = CH3 C2H5, n-C3H7, n-C4H9, C6H5CH2, C6H8) react with compound Ia at 130°C to give the corresponding methyl dithioesters. Carboxylic acids RCOOH (R = C6H8-CH2, C6H8) react with compound Ib at 200°C for 15 min to give the corresponding ethyl dithioesters, while low boiling acids (R = CH3, C2H8, n-C3H7) yielded mixtures of the corresponding ethyl dithioester and ethyl carboxylate. Carboxylic acid chlorides RCOCl (R = ClCH2, C2H5, t-C4H5 C6H5CH2, C6H5, P-NO2C6H4) react with compound IIa at 80°C to give the corresponding methyl dithioesters in good yields. S-Substituted thioesters react with IIC at 85°C to give the corresponding dithioesters in good yields. Dihydro2(3H)-furanone, VI, and 5-methyl-2(3H)-furanone, VII, react with IIa at 80°C; to dihydro-2(3H)-thiophenethione, VIII and 2,2'-dithiobis(5-methyl thiophene),IX, respectively. Also XI reacts with IIa,IIc, and IId to give VIII in nearly quantitative yields.  相似文献   

14.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

15.
The cyclopentadienylcobalt(I) compounds C5H5Co(PMe3)P(OR)3 (R = Me, Et, Pri) and C5H5Co(C2H4)L (L = PMe3, P(OMe)3, CO) are prepared by ligand substitution starting from C5H5Co(PMe3)2 and C5H5Co(C2H4)2. Whereas the reaction of C5H5Co(PMe3)P(OMe)3 with CH2Br2 mainly gives [C5H5CoBr(PMe3)P(OMe)3]Br, the dihalogenocobalt(III) complexes C5H5CoX2(PMe3) (X = Br, I) are obtained from C5H5Co(CO)PMe3 and CH2X2. Treatment of C5H5Co(CO)PMe3 or C5H5Co(C2H4)PMe3 with CH2ClI at low temperatures produces a mixture of C5H5CoCH2Cl(PMe3)I and C5H5CoCl(PMe3)I, which can be separated due to their different solubilities. The same reaction in the presence of ligand L gives the carbenoidcobalt(III) compounds [C5H5CoCH2Cl(PMe3)L]PF6 in nearly quantitative yields. If NEt3 is used as the Lewis base, the ylide complexes [C5H5Co(CH2PMe3)(PMe3)X]PF6 (X = Br, I) are obtained. The PF6 salts of the dications [C5H5Co(CH2PMe3)(PMe3)L]2+ (L = PMe3, P(OMe)3, CNMe) and [C5H5Co(CH2PMe3)(P(OMe)3)2]2+ are prepared either from [C5H5Co(CH2PMe3)(PMe3)X]+ and L, or more directly from C5H5Co(CO)PMe3, CH2X2 and PMe3 or P(OMe)3, respectively. The synthesis of C5H5CoCH2OMe(PMe3)I is also described.  相似文献   

16.
The preparation of (borinato)(cyclobutadiene)cobalt complexes from the reactions of Co(C5H5BR)(1,5-C8H12) with acetylenes C2R′2 and of [C4(CH3)4]Co(CO)2I with Tl(C5H5BR) (R,R′ = CH3, C6H5) is described.In electrophilic substitution reactions Co(C5H5BCH3)[C4(CH3)4] (IVa) is more reactive than ferrocene. CF3CO2D effects H/D-exchange in the α-position of the borabenzene ring within a few minutes at ambient temperature and in the γ-position within less than four hours Friedel-Crafts acetylation with CH3COCl/AsCl3 in CH2Cl2 affords the 2-acetyl and the 2,6-diacetyl derivative of IVa. With the more active catalyst AlCl3, ring-member substitution is effected to give cations [Co(arene)C4(CH3)4]+ (arene = C6H5CH3, 2-CH3C6H4COCH3). Vilsmeier formylation gives the 2-formyl derivative of IVa. The acyl derivatives Co(2-R1CO-6-R2C5H3BCH3)[C4(CH3)4] (R1 = CH3, R2 = H, CH3CO and R1 = R2 = H) transform to the corresponding cations [Co(ortho-R1R2C6H4)C4(CH3)4]+ in superacidic media. The mechanistic relationship between acylation and ring-member substitution is discussed in detail.  相似文献   

17.
Upon reaction with NaBH4 the carbene chelates [C5H5(CO)xMC(C6H5N(CH3)C(C6H5)N(CH3)]PF6 (I,M = Mo, x = 2; II,M = Fe, x = 1) are reduced at the carbene carbon with formation of the neutral compounds C5H5(CO)xMC(H)(C6H5)N(CH3)C(C6H5)N(CH3) (III and IV). Depending on the orientation of the incoming H substituent with respect to the C5H5 ligand two different isomers A and B are obtained which can be separated by column chromatography. Whereas the H? addition to the Fe compound II is almost stereospecific (formation of 95% IVB), the stereoselectivity of the H? addition to the Mo compound I is influenced by a competitive metal centered rearrangement of III in opposite direction. The approach to the equilibrium IIIA/IIIB 85/15 can be measured by 1H NMR spectroscopy (ΔG3328 26.6 kcal/mol).  相似文献   

18.
Twelve new germanium substituted diphenyltin dipropionates with the general formula (R1GeCHR2‐CHR3COO)2SnPh2 where R1 = N(CH2CH2O)3, (C6H5)3 and (CH3C6H4)3, R2 = H, CH3, C6H5, p‐CH3C6H4, p‐CH3OC6H4, p‐ClC6H4, and R3 = H, CH3 have been synthesized by the reaction of diphenyltin oxide with a germanium substituted propionic acid. All the compounds were characterized by elemental analysis, IR, multi‐nuclear (1H, 13C, 119Sn) NMR and Mössbauer spectroscopies as well as mass spectrometry. The in vitro antibacterial activity of selected compounds is also reported.  相似文献   

19.
The iodo-bridged sulfur ylide complex [Pd(μ-I)((CH2)2(SO)(CH3))]2 (1) when treated with dithiolates, acetylacetone and various Lewis bases gave [Pd((CH2)2(SO)(CH3))(S ∼ S)] (S ∼ S = S2CN(C2H5)2, S2COC2H5 and S2P(OC2H5)2), [Pd((CH2)2(SO)(CH3))(acac)] (acac = acetylacetonate) and [PdI((CH2)2(SO)(CH3))(base)]a (base = PPh3, (P(OMe)3, P(OPh)3 and C5H5N). In the presence of a phase transfer catalyst (PTC). The reactions rates and yields were greatly increased. Reaction of several related sulfur ylide complexes with I2, HI or aqueous NaOH gave 1. The single crystal structure of [Pd((CH2)2(SO)(CH3))2] was determined (orthorhombic, Pbcn, a 13.379(2), b 8.081(1), c 9.048(2) Å, V 978.2 Å3, Z = 4). The compound has a rather long PdCH2 bond (2.096(1) Å, mean).  相似文献   

20.
Carbon-13 chemical shifts and the POC, POCC, PNC and PNCC coupling constants of 18 compounds containing the amine moiety, and with the general formula Y2P(X)NHR [Y=C2H5O, C6H5O, CH2O, Y2=1,2-dioxybenzene; X = O or S; R = H, CH3, C2H5, PhCH2CH2, (CH3)2CH, C(CH3)3, C6H11, C6H5, C6H5NH] have been determined. The Y2P(X) group shows a sterically induced effect on the amine moiety; the 13C chemical shift of the Y group is, however, almost unaffected on replacing P(O) by a P(S) group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号