首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of K2[PtCl4] with 2-(1-methylbenzyl)pyridine, HL, and 2-benzylpyridine, HL', affords the cyclometallated species [{Pt(L)Cl}2] (1) and [{Pt(L')Cl}2] (2), respectively. The chloride bridge in complex 1 can be split by neutral or anionic species to give the monomeric, [Pt(L)(Ph3P)Cl], as two isomers, trans-P-Pt-C (3) and trans-P-Pt-N, (4), [Pt(L)(py)Cl] (5), [Pt(L)(CO)Cl] (6), [Pt(L)(CNCH2SO2C6H4CH3-4)Cl] (7), [Pt(L)(acac)] (Hacac = 2,4-pentanedione) (8), [Pt(L)(dppm)][BF4] (dppm = bis(diphenyl-phosphino)methane) (9), [Pt(L)(dppe)][BF4] (dppe = bis(diphenylphosphino)ethane) (10) and [Pt(L)(dipy)][BF4](dipy = 2,2'-dipyridine) (11). Similarly, compound 2, by reaction with Ph3P, affords [Pt(L')(Ph3P)Cl], as two isomers, trans-P-Pt-C (12) and trans-P-Pt-N (13). Reaction of compounds 1 or 4 with AgBF4 in acetonitrile affords [Pt(L)(CH3CN)2IBF4] (14) or [Pt(L)(Ph3P)-(CH3CN)][BF4] (15). From these, [Pt(L)(Ph3P)2][BF4] (16), [Pt(L)(Ph3P)(CO)][BF4] (17) and [Pt(L)(Ph3P)(py)][BF4] (18), can be obtained by displacement of the coordinated acetonitrile. The new complexes were characterized by IR, 1H and 31P NMR and FAB-MS spectroscopic techniques. The NMR spectra at room temperature of most of the species derived from HL give evidence for the presence in solution of two diastereomers a and b. The structure of one diastereomer of complex 4 has been solved by single crystal X-ray diffraction, 4b. The platinum atom is in an almost square planar geometry with a P-Pt-N trans arrangement: Pt-N = 2.095(3), Pt-C = 1.998(4), Pt-P = 2.226(1) and Pt-Cl = 2.400(1) Å. The six-membered cyclometallated ring is in a boat conformation, with the CH3 group in an equatorial position, i.e pointing away from the metal. Attempts to obtain [{Pt(L″)Cl}2] (HL″ = 2-(dimethylbenzyl)pyridine), afforded an insoluble product heavily contaminated by platinum metal; treatment of this crude material with Ph3P gave [Pt(L″)(Ph3P)Cl] (19).  相似文献   

2.
Reactions of the PtH and/or PtC bonds of the hydridocyanoalkyl complexes cis- or trans-PtH[(CH2)nCN]L2 (n = 1, 3; L2 = 2 PPh3, Ph2PCHCHPPh2) are described, viz. reductive elimination induced by CO, PhCCPh, PEt3, PPhMe2, cis-Ph2PCHCHPPh2 to give Pt(CO)2L2, PtL2(PhCCPh), PtL2, PtL(PPhMe2)3, PtL2(Ph2PCHCHPPh2) (L = PPh3), respectively, and cleavages by acids, halogens and alkyl halides.The monomeric hydroxo complexes cis-Pt(OH)[(CH2)nCN]L2 were shown to be intermediates in the synthesis of PtH[(CH2)nCN]L2 from cationic cyanoalkyl complexes in alcoholic NaOH. Their characterisation and the reactions of the PtOH bond with activated methyl groups are reported.  相似文献   

3.
cis-PtCl(CH2CN)(PPh3)2 was obtained by the reaction of Pt(PPh3)4 with ClCH2CN in acetone. A solution of Pt(PPh3)4 and ClCH2CN in benzene was heated under reflux to give trans-PtCl(CH2CN)(PPh3)2. The reaction of the trans-isomer with Br?, I?, Ph2PCH2CH2 PPh2, Ph2PCH2CH2AsPh2 and cisPh2PCHCHPPh2 has been examined. The trans-influence of a ligand trans to the CH2CN group seems to be indicated by the 2J(PtH) of the CH2CN protons. The τ values of trans-PtX(CH2CN)(PPh3)2 and PtX(CH2 CN)(PP) (X = Cl, Br, I) are related by a linear function.  相似文献   

4.
Oxidative addition of chloromethyl methyl sulfide to Pd(Ph3P)4 provided a good yield of Pd(Ph3P)2(CH2SCH3)Cl (I) whose 1H NMR and molecular weight data showed that dissociation of either the phosphine or the chloride ligand occurs in CH2Cl2 solution. In accord with such equilibria, repeated crystallization of I from CH2Cl2 and Et2O gradually removed the triphenylphosphine set free in these solvents to give the monomeric complex. Pd(Ph3P)(CH2SCH3)Cl (III), while treatment of 1 with NH4PF6 in CH2Cl2 and acetone gave the cationic complex [Pd(Ph3P)2(CH2SCH3]PF6 (II),1H NMR spectra of II and III are discussed in terms of a three-membered chelate structure arising from coordination of sulfur with palladium  相似文献   

5.
Errata     
A novel palladium compound, (Ph3P)Pd(Cl)(CH2SCH3), was prepared in which the CH3SCH2 group acts as a chelate ligand; the stereochemically non-rigid property of (Ph3P)Pd(CH2SCH3)[S2CN(CH3)2] was also discussed in terms of the ligating effect of sulfur in this group.  相似文献   

6.
Reaction of [PtCl2(cod)] with Ph2PCH2SCH3 yields cis-[PtCl2(Ph2PCH2-SCH3)2] which, on treatment with AgBF4, is converted to [PtC](Ph2PCH2SCH3)2]-BF4, in which one of the ligands is chelated. With [Pt(dba)2], cis-[Pt(Cl2(Ph2PCH2-SCH3)2] reacts to give the platinum(I) complex [Pt2Cl2(μ-Ph2PCH2SCH3)2], which contains a platinum-platinum bond. The terminal chlorides may be replaced by iodide, but the complex is cleaved by carbon monoxide. [Rh2(μ-Cl)2(CO)4] reacts with Ph2PCH2SCH3 to produce [Rh2Cl2(CO)2(μ-Ph2PCH2SCH3)2], whereas with Ph2PCH2CH2SCH3 it yields [RhCl(CO)(Ph2PCH2CH2SCH3)]. A ligand exchange reaction occurs between cis-[PtCl2(Ph2SCH3)2] and [Rh2(μ-Cl)2(CO)4] to give cis-[PtCl2(CO)(Ph2PCH2SCH3)] and [Rh2Cl2(CO)2(μ-Ph2PCH2SCH3)2].  相似文献   

7.
The reaction of isocyanides, CNR, with hydroxy- and methoxy-alkyl complexes of platinum(II), PtOH(R)(Ph2 PCHCHPPh2)_and PtOCH3(R)(Ph2PCHCHPPh2) (R  CF3, CH2 CN) affords insertion products Pt(CONHR)(R)(Ph2PCHCHPPh2) and Pt[C(OCH3)NR] (R)(Ph2PCHCHPPh2) containing the carboxamido and imidoyl moiety, respectively.  相似文献   

8.
A high-yield synthesis of [IrCl(cod)]2 (cod = 1,5-cyclooctadiene) is described. The 1H and 13C NMR spectra of a number of complexes [IrCl(cod)L] are interpreted in terms of a trans-effect series Cl? < sym-collidine < 2-picoline < PCy3 < P-i-Pr3 < Pet3 ~ AsPh3 < PMe2Ph < PMePh2 < PPh2 <P(MeO)Ph2 < PClPh2 < P(OPh)3 < PCl2Ph. Some ligand exchange reactions of [IrCl(cod)L] are discussed. A number of complexes of the type [Ir(cod)Ln]PF6 (L = a variety of amines (n = 2) and phosphines (n = 2 or 3)) are described. Exchange reactions of the sort: [Ir(cod)(PR3)2]PF6 + [Ir(cod)(py)2]PF6 ? [Ir(cod)(PR3)Py]PF6 are reported in which, surprisingly, the isolable mixed ligand complexes are the only detectable species at equilibrium (py = pyridine).  相似文献   

9.
The rhodium(I) complexes (Ph3P)2Rh(LL′), in which LL′ is an unsaturated chelate coordinating via L = S and L′ = N, O, P or S, have been prepared from RhCl(PPh3)3 by two routes.Direct substitution of one Ph3P and Cl? by the chelate anion gives (Ph3P)2Rh[Ph2PC(S)S] (L = S, L′ = P). Oxidative addition of an NH bond followed by reductive elimination of HCl results in (Ph3P)2Rh[Me2NC(S)NC(S)NMe2] (L = S, L′ = S), (Ph3P)2Rh[PhNC(S)NMe2] (L = S, L′ = N), (Ph3P)2Rh[Ph2PC(S)NPh) (L = S, L′ = P) and (Ph3P)2Rh[Ph2P(O)C(S)NPh] (L = S, L′ = O).Reaction of the complexes (Ph3P)2Rh(LL′) with CO gives (CO)(Ph3P)Rh(LL′) with CO trans to the chelate donor atom with the lowest trans-influence. Pt(PPh3)4 reacts with Me2NC(S)N(H)C(S)NMe2 and HN(Ph)C(S)PPh2, respectively, to give H(Ph3P)Pt[Me2NC(S)NC(S)NMe2] (L = S, L′ = S) and H(Ph3P)Pt[Ph2PC(S)NPh] (L = S, L′ = P).The coordinating atoms and their configurations have been assigned by IR 31P NMR and 1H NMR. Some trend in IR and 31P NMR paramaters are discussed.  相似文献   

10.
Reactions of the four-membered ring chelate CH3N(PF2)2Cr(CO)4 with trivalent phosphorous ligands (L) at 80°C leads to facile opening of the chelate ring to give the mixed ligand complexes trans-CH3N(PF2)2Cr(CO)4L (L=C6H5)3P or monodentate C6H5N(PF2)2) containing a monodentate CH3N(PF2)2 ligand.  相似文献   

11.
The air stable yellow-orange complexes of cyclobutadieneiron dicarbonyl nitrosyl hexafluorophosphate, [R4C4Fe(CO)2NO]+PF-6; R = H, CH3, Ph, were prepared by the reaction of R4C4Fe(CO)3 and nitrosonium hexafluorophosphate. These complexes undergo facile monocarbonyl substitution reactions with various Lewis bases (L) to afford products of the type [R4C4Fe(CO)(NO)L]+PF-6, R = H, L = Ph3P, Ph3As, Ph3Sb or R = Ph; L = Ph3P, Ph3As; a dicarbonyl substitution product of the type [R4C4Fe(NO)L2]+PF-6, R = Ph; L = (PhO)3P, was also isolated and characterized.  相似文献   

12.
The reaction of PtCl2L (L = diphosphine) with the appropriate diphosphine L′ in ethanol followed by reduction with aqueous sodium borohydride leads to either disproportionation to give mixtures of the bis(diphosphine) complexes PtL2 and PtL′2 or to the formation of the mixed ligand complex PtLL′ depending on the diphosphines. Mixed ligand complexes are obtained when L=Ph2P(CH2)2PPh2, L′ = Ph2P(CH2PPh2cis-Ph2PCH CHPPh2, Ph2P(CH2)2AsPh2, Ph2- P(CH2)4PPh2, o-Ph2PC6H4PPh2; and L=(C6H11)2P(CH22P(C6H11)2, L′= Ph2P(CH2)PPh2, Ph2P(CH2)2PPh2cis-Ph2PCHCHPPh2, (2S,3S)-Ph2PCH- (CH3)CH(CH3)PPh2, (R)-Ph2PCH(CH3)CH2PPh2. When L=Ph2P(CH2)4PPh2 L′= Ph2P(CH23PPh2 or cis-Ph2PCHCHRPh2 the mixed ligand complexes are obtained but extensive disproportionation also occurs.  相似文献   

13.
The oxidation of [MII(3,5-DTBCat)(DTBbpy)] (M=Ni ( [Ni] ), Pd ( [Pd] ), and Pt ( [Pt] ); 3,5-DTBCat=3,5-di-tert-butylcatecholato; DTBbpy=4,4′-di-tert-butyl-2,2′-bipyridine) afforded the dimeric {[NiII(3,5-DTBSQ)(DTBbpy)](PF6)}2 ( {[Ni](PF6)}2 ; 3,5-DTBSQ=3,5-di-tert-butylsemiquinonato) and monomeric semiquinonato (SQ) complexes [MII(3,5-DTBSQ)(DTBbpy)](PF6) (M=Pd ( [Pd](PF6) ) and Pt ( [Pt](PF6) )). The negative solvatochromic properties of the SQ complexes allowed us to estimate the relative order of their dipole moments: [Pd](PF6) > [Pt](PF6) > {[Ni](PF6)}2 . The complexes [Pd](PF6) and [Pt](PF6) adopt monomeric structures and are stable in CH2Cl2 and toluene, whereas they gradually disproportionate at room temperature to [M] and 3,5-di-tert-butylbenzoquinone (3,5-DTBBQ) in polar solvents such as THF, MeOH, EtOH, DMF, or DMSO. The results of spectroscopic studies suggested that the oxidized nickel complex adopts a monomeric structure ( [Ni](PF6) ) in CH2Cl2, but a dimeric structure ( {[Ni](PF6)}2 ) in the other investigated solvents. In polar solvents, {[Ni](PF6)}2 may disproportionate to [Ni] and 3,5-DTBBQ at 323 K, thereby demonstrating a significant solvent- and metal-dependence in temperature. The relative activities of {[Ni](PF6)}2 and [M](PF6) toward disproportionation are related to the electrochemically estimated Kdis values in CH2Cl2 and DMF. The present work demonstrates that solvent polarity and the dipole moments of the SQ complexes promote disproportionation, which can be controlled by a judicious choice of the metal ion, solvent, and temperature.  相似文献   

14.
The (hydroxo) methyl complex Pt(OH)(CH3)(Diphos) [Diphos = Ph2PCH2CH2PPh2] reacts with compounds containing acidic CH bonds (HX) to give unsymmetrical cis-dialkyls of general formula Pt(CH3)X(Diphos) [X = CH2COCH3, CH(COCH3)2, CH2CN or CH2NO2]; both the methyl and the cyclohexenyl complexes Pt(OH)R(Diphos) (R = CH3 or C6H9) insert carbon monoxide to give hydroxycarbonyl complexes PtR(CO2H)(Diphos) which are remarkably stable to decomposition by β-elimination.  相似文献   

15.
Reaction of alkali metal halides (MX) with methylenediphosphine oxides and various related compounds in nonaqueous solutions leads to the formation of complex compounds. The compositions, properties, and stabilities of these compounds, which have been studied in detail in acetonitrile, are determined by the nature of the cations and anions of the alkali metal halides. Formation of neutral complexes with the composition [MX · L] and cationic complexes with the composition [ML]+ has been established. The most characteristic representative of complexes of the first type is [NaI · L]; in the complexes studied, L=R2P(O)CH2P(O)R2 (R=Bu, BuO, or Ph), Ph2P(O)CH2P(O) (OC2H5)CH2P(O)Ph2 and (p-OCH3C6H4)2P(O)CH2P(O)(C6H4CF3-p)2. Compound [LiL]+ is characteristic of complexes of the second type; the compounds containing Ph3P(O), Ph2P(O)CH2P(O)Ph2, and Ph2P(O)CH2P(O)(OC2H5)CH2P(O)Ph2 as ligands have been studied. Stability constants of the complexes [NaI · L] and [LiL]+ have been determined by measuring the dependence of the electrical conductivity of solutions of the alkali metal halides in acetonitrile on the concentration of the ligands. The complex-forming power of phosphine oxides increases with increase in the number of P=O groups. Stabilities of the complexes [NaI · L] with ligands with identical structure decrease with increase in the electronegativity of the substituents on the phosphorus atoms.  相似文献   

16.
Reaction of Ph4P[Mo(2,2′-bipyridine)Cl(CO3] with 1,4-dichlorobut-2-yne in the presence of primary or secondary aliphatic amines gives high yields of neutral molybdenum complexes containing 2-substituted η3-bonded trans-butadienyl ligands. The crystal structure of the perfluorocarboxylate derivative [Mo(2,2′-bipyridine)(CO)23-CH2C(CONHMe)CCH2) (O2CC3F7] has been determined.  相似文献   

17.
《Polyhedron》1999,18(26):3553-3558
[CrX3(thf)3] (X=Cl or Br) reacts with L (L=L1–L3 or Ph2[14]aneP2S2) (L1=Ph2P(CH2)2S(CH2)2S(CH2)2PPh2, L2=Ph2P(CH2)2S(CH2)3S(CH2)2PPh2, L3=Ph2P(CH2)2S(o-C6H4)S(CH2)2PPh2, Ph2[14]aneP2S2=4,8-diphenyl-1,11-dithia-4,8-diphosphacyclotetradecane) and TlPF6 in MeNO2 solution to yield the distorted octahedral complexes [CrX2(L)]PF6 as green coloured solids in high yield. UV/visible spectroscopy suggests that these are cis-dihalo species and they have also been characterised by IR spectroscopy, electrospray mass spectrometry and microanalyses. The Co(III) analogues [CoX2(L)]+ are readily prepared in a two-stage reaction, involving treatment of CoX2·6H2O with L (L=L1–L3) and NH4PF6 in EtOH solution to give a green/brown solid, followed by halogen oxidation of this product in CH2Cl2 solution using X2/CCl4, to give the final products as brown coloured solids. A mixture of PF6 and [CoX4]2− anions are present in the final Co(III) compounds in varying ratios. Crystal structures of [CoCl2(L2)]2[CoCl4]·4H2O and [CoCl2(L3)]PF6·CH2Cl2 confirm tetradentate P2S2 coordination of L in each case, with mutually cis halogens completing the distorted octahedral geometry. In both cases the complex cation adopts the cis-α form in the solid state and this is also consistent with the solution 31P{1H} NMR spectroscopic data. 59Co NMR spectroscopy reveals a very broad single resonance at ≈3200 ppm for these species.  相似文献   

18.
The barrier to olefin rotation in [Pt(η3-CH2CMeCH2)(olefin)(PPh3)]PF6 (3) (olefin = CH2CH2, E-MeCHCHMe) has been found to be extremely low compared to those in the other known, 4-coordinate olefin complexes of PtII. This can be ascribed to the smaller steric congestion around the olefin in 3. The corresponding barrier in [Pt(η5-C5H5)(CH2CH2)(PPh3]ClO4 (2), possessing likewise small steric congestion, was substantially higher than that in 3 (olefin = CH2CH2). The 13C and 31P NMR measurements have revealed much larger J(Pt-C(olefin)) in 2 than that in 3 (olefin = CH2CH2), while J(Pt-P) are comparable in these two. Stability constant data suggested that PdII ion in the Pd(η5-C5H5)(PPh3)+ moiety is a better π-donor to olefins than PtII ion in the Pt(η3-CH2CMeCH2)(PPh3)+ moiety, a reversal of the normal trend in the relative olefin affinity of these metal ions. The above spectral and stability features have been related to the electronic effect of the Cp ligand in enhancing the π back-bond interaction in one particular orientation of the CC bond.  相似文献   

19.
Novel η1-vinyl complexes of the type Cp(CO)(L)FeC(OMe)C(R)R′ (R = R′ = H, Me; R = H, R′ = Me; L = Me3P, Ph3P) are obtainied via methylation of the acyl complexes Cp(CO)(L)FeC(O)R (R = Me, Et, i-Pr) with MeOSO2F and subsequent deprotonation of the resulting carbene complexes [Cp(CO)(L)FeC(OMe)R]SO3F with the phosphorus ylide Me3PCH2. The same procedure can be applied for the synthesis of the pentamethylcyclopentadienyl derivative C5Me5(CO)(Me3P)FeC(OMe)CH2, while treatment of the hydroxy or siloxy carbene complexes [Cp(CO)(L)FeC(OR)Me]X (R = H, Me3Si; X = SO3CF3) with Me3CH2 results in the transfer of the oxygen bound electrophile to the ylidic carbon. Some remarkable spectroscopic properties of the new complexes are reported.  相似文献   

20.
Aryl(chloromethyl)thallium chlorides, Ar(ClCH2)TlCl (Ar=C6H5, p-CH3C6H4) have been prepared by treatment of arylthallium dichlorides with diazomethane. The derived carboxylates, Ar(ClCH2)TlX, react with HgX2 to give the dicarboxylates, (ClCH2)TlX2 (X = OCOCH3, OCOC3H7-i) and with tetramethyltin to give CH3(ClCH2)TlX compounds. R(ClCH2)TIX compounds (R = CH3, C6H5, p-CH3C6H4) undergo disproportionation in methanol to R2TlX and (ClCH2)2TlX compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号