首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The limits of steric crowding in organometallic metallocene complexes have been examined by studying the synthesis of [(C5Me5)3MLn] complexes as a function of metal in which L=Me3CCN, Me3CNC, and Me3SiCN. The bis(tert‐butyl nitrile) complexes [(C5Me5)3Ln(NCCMe3)2] (Ln=La, 1 ; Ce, 2 ; Pr, 3 ) can be isolated with the largest lanthanide metal ions, La3+, Ce3+, and Pr3+. The Pr3+ ion also forms an isolable mono‐nitrile complex, [(C5Me5)3Pr(NCCMe3)] ( 4 ), whereas for Nd3+ only the mono‐adduct [(C5Me5)3Nd(NCCMe3)] ( 5 ) was observed. With smaller metal ions, Sm3+ and Y3+, insertion of Me3CCN into the M? C(C5Me5) bond was observed to form the cyclopentadiene‐substituted ketimide complexes [(C5Me5)2Ln{NC(C5Me5)(CMe3)}(NCCMe3)] (Ln=Sm, 6 ; Y, 7 ). With tert‐butyl isocyanide ligands, a bis‐isocyanide product can be isolated with lanthanum, [(C5Me5)3La(CNCMe3)2] ( 8 ), and a mono‐isocyanide product with neodymium, [(C5Me5)3Nd(CNCMe3)] ( 9 ). Silicon–carbon bond cleavage was observed in reactions between [(C5Me5)3Ln] complexes and trimethylsilyl cyanide, Me3SiCN, to produce the trimeric cyanide complexes [{(C5Me5)2Ln(μ‐CN)(NCSiMe3)}3] (Ln=La, 10 ; Pr, 11 ). With uranium, a mono‐nitrile reaction product, [(C5Me5)3U(NCCMe3)] ( 12 ), which is analogous to 5 , was obtained from the reaction between [(C5Me5)3U] and Me3CCN, but [(C5Me5)3U] reacts with Me3CNC through C? N bond cleavage to form a trimeric cyanide complex, [{(C5Me5)2U(μ‐CN)(CNCMe3)}3] ( 13 ).  相似文献   

2.
Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB=carborate=[CHB11H5Cl6], [CHB11Cl11]) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4] and [CB] salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+.  相似文献   

3.
Potentiometric studies of the interaction of (Me2Sn)2+ and (Me3Sn)+ with 5′-guanosine monophosphate [(5′-HGMP)2?, abbreviated as (HL-1)2?] and guanosine [(HGUO), abbreviated as (HL-2)] in aqueous solution (I = 0.1 mol·dm?3 KNO3, 298.15 ± 0.1 K) were performed, and the speciation of various complex species was evaluated as a function of pH. The species that exist at physiological pH ~7.0 are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (87.0/88.8 %), [Me2Sn(HL-1)(OH)]?/[Me2Sn(HL-2)(OH)]+ (3.0/0 %) and [Me2Sn(HL-1H?1)]/[Me2Sn(HL-2H?1)]2+ (9.4/6.6 %) for 1:1 dimethyltin(IV):5′-guanosine monophosphate/dimethyltin(IV): guanosine systems, whereas for the corresponding 1:2 systems, the species are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (44.0/92.0 %), [Me2Sn(HL-1H?1)]/[Me2Sn(HL-2H?1)]2+ (5.0/6.0 %), Me2Sn(OH)2 (49.0/0 %), [Me2Sn(HL-1)(OH)]?/[Me2Sn(HL-2)(OH)]+ (1.5/2.0 %), and [Me2Sn(OH)]+ (1.0/0 %). For 1:1 trimethyltin(IV):5′-guanosine monophosphate/trimethyltin(IV):guanosine systems, only [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ (99.9 %) are found at pH = 7.0, whereas for 1:2 systems, [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ (49.8/100 %), Me3Sn(OH) (15.0/0 %) and [Me3Sn(HL-1)(OH)]2?/Me3Sn(HL-2)(OH) (0.2/0 %) are the species found. No polymeric species were detected. Beyond pH = 8.0, significant amounts of [Me2Sn(OH)]+, Me2Sn(OH)2, [Me2Sn(OH)3]? and Me3Sn(OH) are formed. Multinuclear (1H, 13C and 119Sn) NMR studies at different pHs indicated a distorted octahedral geometry for the species Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ in dimethyltin(IV)-(HL-1)2?/(HL-2) systems and a distorted trigonal bipyramidal/distorted tetrahedral geometry for the species [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ in trimethyltin(IV)-(HL-1)2?/(HL-2) systems.  相似文献   

4.
The complexes [C5Me5MMe2(Me2SO)] (Ia, M = Rh; Ib, M = Ir) react with p-toluenesulphonic acid in acetonitrile to give [C5Me5MMe(Me2SO)(MeCN)]+, (II), and with trifluoroacetic acid to give first [C5Me5MMe(Me2SO)(O2CCF3)] and then [C5Me5M(Me2SO)(O2CCF3)2]. Complexes II react with halide (X?) to give the halomethyl complexes [C5Me5MMe(X)(Me2SO)]. The IR, far-IR, 1H and 13C NMR spectra are all in agreement with structures proposed.  相似文献   

5.
Transition Metal-substituted Acylphosphanes and Phosphaalkenes. 22. Insertions of Hexafluoroacetone into the PX-Bond of Metallophosphanes (η5-C5Me5)(CO)2M? PX2 (M = Fe, Ru; X = Me3Si, Cl). Structure Determination of (η5-C5Me5)(CO)2Fe? P(SiMe3)C(CF3)2(OSiMe3) Reaction of the metallophosphanes (η5-C5Me5)(CO)2M? P(SiMe3)2 ( 1a : M = Fe; 1b : M = Ru) with hexafluoroacetone (HFA) afforded the complexes (η5-C5Me5)(CO)2M? P(SiMe3)C(CF3)2(OSiMe3) ( 2a, b ). The attempted synthesis of a metallophosphaalkene from 2a by thermal elimination of hexamethyldisiloxane failed. The acid catalyzed hydrolysis of 2a afforded compound (η5-C5Me5) · (CO)2Fe? P(H)C(CF3)2(OSiMe3) ( 3 ). Hexafluoracetone and (η5-C5Me5)(CO)2Fe? PCl2 ( 4 ) under-went reaction to give the metallochlorophosphan (η5-C5Me5) · (CO)2Fe? P(Cl)? O? C(CF3)2Cl ( 5 ). Constitutions and configurations of the compounds ( 2–5 ) were established by elemental analyses and spectroscopic data (IR, 1H-, 13C, 19F-, 29Si-, 31P-NMR, MS). The molecular structure of 2a was determined by x-ray diffraction analysis.  相似文献   

6.
New zincocenes [ZnCp′2] ( 2 – 5 ) with substituted cyclopentadienyl ligands C5Me4H, C5Me4tBu, C5Me4SiMe2tBu and C5Me4SiMe3, respectively, have been prepared by the reaction of ZnCl2 with the appropriate Cp′‐transfer reagent. For a comparative structural study, the known [Zn(C5H4SiMe3)2] ( 1 ), has also been investigated, along with the mixed‐ring zincocenes [Zn(C5Me5)(C5Me4SiMe3)] ( 6 ) and [Zn(C5Me5)(C5H4SiMe3)] ( 7 ), the last two obtained by conproportionation of [Zn(C5Me5)2] with 5 or 1 , as appropriate. All new compounds were characterised by NMR spectroscopy, and by X‐ray methods, with the exception of 7 , which yields a side‐product ( C ) upon attempted crystallisation. Compounds 5 and 6 were also investigated by 13C CPMAS NMR spectroscopy. Zincocenes 1 and 2 have infinite chain structures with bridging Cp′ ligands, while 3 and 4 exhibit slipped‐sandwich geometries. Compounds 5 and 6 have rigid, η51(σ) structures, in which the monohapto C5Me4SiMe3 ligand is bound to zinc through the silyl‐bearing carbon atom, forming a Zn? C bond of comparable strength to the Zn? Me bond in ZnMe2. Zincocene 5 has dynamic behaviour in solution, but a rigid η51(σ) structure in the solid state, as revealed by 13C CPMAS NMR studies, whereas for 6 the different nature of the Cp′ ligands and of the ring substituents of the η1‐Cp′ group (Me and SiMe3) have permitted observation for the first time of the rigid η51 solution structure. Iminoacyl compounds of composition [Zn(η5‐C5Me4R)(η1‐C(NXyl)C5Me4R)] resulting from the reactions of some of the above zincocenes and CNXyl (Xyl=2,6‐dimethylphenylisocyanide) have also been obtained and characterised.  相似文献   

7.
The complexes Er(Me2pz)3(thf) and Ln(Ph2pz)3(thf)n (Ln = Sc, Y, Gd, Er, n = 2; Ln = Lu, n = 3) (Me2pz? = 3,5-dimethylpyrazolate, thf = tetrahydrofuran, Ph2pz? = 3,5-diphenylpyrazolate) have been prepared by reaction of the lanthanoid metal with bis(pentafluorophenyl)mercury and the pyrazole in thf. The Ln(Ph2pz)3(thf)2 complexes are considered to be eight coordinate with three η2-Ph2pz ligands. Other lanthanoid pyrazolate complexes, Y(pz)3(thf)2, La(Me2pz)3(thf), Cp2Ln(Me2pz)(thf)n (Ln = Y, Lu, n = 0; Ln = Lu, n = 1), (C5Me5)2Y(pz)(thf), (C5Me5)2Y(Mepz)(thf), (C5Me5)2Y(Me2pz)(thf)2 (pz? = pyrazolate, Mepz? = 3-methylpyrazolate, Cp = cyclopentadienyl) have been synthesized by reaction of LnCl3, Cp2LnCl, or (C5Me5)2LnCl with the appropriate sodium pyrazolate in thf. The structure of Ln(Me2pz)3(thf) (Ln = La or Er) is considered to be a symmetrical dimer with four chelating and two bridging Me2pz groups, and two bridging thf ligands, whereas the cyclopentadienyl complexes are most likely dimers with bridging pyrazolate groups, and lattice thf of solvation.  相似文献   

8.
Ionic Structures of 4- and 5-coordinated Silicon. Novel Ionic Crystal Structures of 4- and 5-coordinated Silicon: [Me3Si(NMI)]+ Cl?, [Me2HSi(NMI)2]+ Cl?, [Me2Si(NMI)3]2+ 2 Cl?. NMI Me3SiCl forms with N-Methylimidazole (NMI) a crystalline 1:1-compound which is stable at room temperature. The X-ray single crystal investigation proves the ionic structure [Me3Si(NMI)]+Cl? 1 which is the result of the cleavage of the Si? Cl bond and the addition of an NMI-ring. The reaction of Me2HSiCl with NMI (in the molar ratio of 1:2), under cleavage of the Si? Cl bond and co-ordination of two NMI rings, yields the compound [Me2HSi(NMI)2]+Cl? 2 . The analogous reaction of Me2SiCl2 with NMI (molar ratio 2:1) leads to a compound which consists of Me2SiCl2 and NMI in the molar ratio of 1:2. During the sublimation single crystals of the compound [Me2Si(NMI)3]2+ 2 Cl?. NMI 3 are formed.  相似文献   

9.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

10.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

11.
The reaction of Os3(CO)12 with C5Me5H in boiling decalin gives the complexes (η5-C5Me5)(CO)2OsH and [(η5-C5Me5)(CO)2Os]2. Both compounds were converted into (η5-C5Me5)(CO)2OsP(SiMe3)2 (III) via the intermediate form (η5-C5-Me5)(CO)2OsBr. Complex III was treated with ArC(O)Cl (Ar = Ph, 2,4,6-Me3C6H2) to give mixtures of the phosphaalkenyl complexes (η5-C5Me5)(CO)2OsPC(OSiMe3)(Ar) (IVa, b) and the diacylphosphido complexes (η5-C5Me5)(CO)2-OsP[C(O)Ar]2 (Va, b). Pivaloyl chloride underwent reaction with III to give complex Vc as the only product. The synthesis of the complexes IVa, b includes an E/Z isomerization process.  相似文献   

12.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

13.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

14.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

15.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VIII. Concerning the Different Tendencies of Silylated and Alkylated Phosphanes and Diphosphanes to Form Chromium Carbonyl Complexes The influence of the substituents Me3Si tBu and Me in phosphanes and diphosphanes on the formation of complex compounds with Cr(CO)5THF is investigated. tBu(Me3Si)P? P(SiMe3)2 1 and (tBu)2P? P(SiMe3)2 2, resp., react with Cr(CO)5THF 4 at ?18°C by coordinating Cr(CO)5 to the P(SiMe3)2 group to give tBu(Me3Si)P? PIV(SiMe3), · Cr(CO)5 1 a, tBu(Me3Si)PIV? PIV(SiMe3)2 · Cr(CO)4 1b and (tBu)2P? PIV(SiMe3)2 · Cr(CO)5 2a . In the reaction of 1 with 4 using a molar ratio of 1:2 at first 1 a is formed which reacts on to yield completely 1 b. In a mixture of the dissolved compounds (Me3Si)3P 5, (tBu)3P 6 and (tBu)3P? P(SiMe3)2 2 only 5 and 6 react with Cr(CO)5THF yielding (Me3Si)3P · Cr(CO)5 and (tBu)3P · Cr(CO)5, but 2 does not yet react. In a solution of (Me3Si)3P 5, P2Me4 7 and (Me3Si)2P? PMe2 3 only 5 and 7 react with Cr(CO)5THF (0.25 to 1.5 equivalents with respect to 3) to give (Me3Si)3P · Cr(CO)5, P2Me4 · Cr(CO)5 and P2Me4 · 2Cr(CO)5. The formation of complexes with Cr(CO)5THF of the phosphanes 5 and 6 is clearly favoured as compared to the silylated diphosphanes 2 and 3 (not to P2Me4); the PR2 groups (R = tBu, Me in 2 or 3 ) don't have a strong influence.  相似文献   

16.
Titanocene–bis(trimethylsilyl)ethyne complexes [Ti(η5-C5Me4R)22-Me3SiCCSiMe3)], where R=benzyl (Bz, 1a), phenyl (Ph, 1b) and p-fluorophenyl (FPh, 1c), thermolyse at 150–160°C to give products of double C---H activation [Ti(η5-C5Me4Bz){η34-C5Me3(CH2)(CHPh)}] (2a), [Ti(η5-C5Me4Bz){η34-C5Me2Bz(CH2)2}] (2a′), [Ti(η5-C5Me4Ph){η34-C5Me2Ph(CH2)2}] (2b), and [Ti(η5-C5Me4FPh){η34-C5Me2FPh(CH2)2}] (2c). In the presence of 2,2,7,7-tetramethylocta-3,5-diyne (TMOD) the thermolysis affords analogous doubly tucked-in compounds bearing one η34-allyldiene and one η5-C5Me4R ligand having TMOD attached by its C-3 and C-6 carbon atoms to the vicinal methylene groups adjacent to the substituent R (R=Bz (3a), Ph (3b), and FPh (3c)). Compound 3a is smoothly converted into air-stable titanocene dichloride [TiCl25-C5Me2Bz(CH2CH(t-Bu)CH=CHCH(t-Bu)CH2)}(η5-C5Me4Bz)] (4a) by a reaction with hydrogen chloride. Yields in both series of doubly tucked-in complexes decrease in the order of substituents: BzPh>FPh. Crystal structures of 1c, 2a, 2b, and 3b have been determined.  相似文献   

17.
[Fe(η-C5Me5)(CO)2(OH2)]+ BF4- (2a) reacts with alkenes and alkynes to give the new complexes [Fe(η-C5Me5)(CO)2(alkene)]+ BF4- and [Fe(η-C5Me5)(CO)2(alkyne)]+ BF4-. The crystal structure of the ruthenium analogue [Ru(η-C5Me5)(CO)2(OH2)]+ CF3SO3- (2b) is described.  相似文献   

18.
We report the first tetrapodal pentadentate ligand composed of five N-heterocyclic carbene donors. The proto-ligand [CC4H5Me](OTf)3 (3) is formed in good yields from commercially available reagents. Upon removal of 5 proton equivalents from 3 with bulky non-nucleophilic bases a dianionic penta-carbene framework is provided in good yields as a dilithium complex CC4MeLi2 ( 4 ). Addition of FeCl3 to a solution of 4 formed in situ provides CC4MeFeCl ( 5 ) in moderate yield. Solution-state magnetism measurements of 5 are consistent with a S=1/2 Fe(III) center. The related diamagnetic Fe(II) compound CC4MeFe ( 6 ) can be formed through reduction of 5 using KC8 though poor solubility characteristics have hampered its formation on a preparative scale and full characterization.  相似文献   

19.
1,2-Diphosphaferrocenes as Ligands in Transition Metal Complexes. X-Ray Structure Analysis of [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}] Reaction of metallo-1,2-diphosphapropene (η5-tBuC5H4)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 with (Z-cyclooctene)Cr(CO)5 afforded the pentacarbonylchromium adduct of a 1,2-diphosphaferrocene [(η5-tBuC5C5H4){η5-1-[Cr(CO)5]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 1 c ). Diphosphaferrocene [(η5-tBuC5H4){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 c ) was formed when (η5-tBuC5H4)(CO)2FeBr was treated with (Me3Si)2P? P?C(SiMe3)2 in toluene at 60°C. Photolysis of molybdenum- and tungsten hexacarbonyl in the presence of [(η5-1,3-tBu2C5H3){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 b ) gave the pentacarbonylmetal adducts 8 (M = Mo) and 9 (M = W), respectively. A corresponding manganese derivative resulted from the photochemical reaction of 2 b and (MeC5H4)Mn(CO)3. Treatment of 2 b with Co2(CO)8 yielded trinuclear [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 11 ). Constitution and configuration of compounds 1 c, 2 c, 8 – 11 were determined by elemental analyses and spectra (IR, 1H-, 13C-, 31P-NMR, MS). In addition the molecular structure of 11 was established by single crystal X-ray analysis.  相似文献   

20.
[C5Me5Rh(μ-co)]2 reacts with phosphines (PMe2H, PMe3) and trimethylphosphite to give the binuclear complexes C5Me5(L)Rh(μ-CO)2RhC5Me5 which have been characterised by elemental analyses, mass spectra,1H and 31P NMR data. They are surprisingly inert toward an excess of L and do not react to give the mononuclear compounds C5Me5Rh(CO)L. These are obtained in good yields from C5Me5Rh(CO)2 and L where L is PMe2H, P(OMe)3, PEt3, P(OEt)3 and PMe2Ph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号