首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pulsed waveguide CO laser operating at room temperature is described. Experimental results of the laser output power variation with discharge parameters and its spectral distribution are given and discussed. In contrast to other CO lasers the best performance has been obtained without diluent gases. A small amount of oxygen added to the CO laser gas enhances the output energy and prevents carbon deposition at the walls of the waveguide channel. So far a laser pulse energy of 40 J has been obtained at an efficiency of 0.4%. Possible ways to increase the laser output energy are discussed.  相似文献   

2.
Design considerations for stable trouble-free operation of a 100 W copper vapour laser are described. Implementation of laser head and modulator design principles result in a laser that meets these goals. The laser is switched by a single small thyratron that operates below all its maximum ratings.  相似文献   

3.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

4.
High-power continuous-wave upconversion fiber laser at room temperature   总被引:9,自引:0,他引:9  
We report cw laser emission of a Pr, Yb-doped ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF fiber in the red spectral region. Laser emission was achieved on the transition P(0)(3)?F(2)(3)(lambda(L)=635 nm) with a Ti:sapphire pump laser tuned to lambda(p)=850 nm . A maximum output power of P(out)=675 mW was obtained at an incident pump power of P(in)=3.37 W . The output power was increased to P(out)=1020 mW when pumping with P(in)=5.51 W was provided by two Ti:sapphire lasers. A photon avalanche process was found to contribute strongly to the population of the upper laser level.  相似文献   

5.
The solid-state, tunable, narrowband, high pulse energy and high reliability lasers are attractive source for LIDAR system. In this paper, we demonstrated a diode pumped injection-seeded 2 μm Tm:YAG laser. By inserting two F-P etalons into the laser cavity, linear-polarized single-frequency seed-laser was achieved at a wavelength of 2013 nm, with a maximum output power of 60 mW. Long-term and short-term frequency stability for the seed-laser were 1.27 × 10− 7 and 97 Hz/μs, respectively. High power Q-switched laser was operated using a bowtie cavity, the bidirectional output of which was favorable for the injection-seeded. After injecting the seed-laser to the power-laser, single-frequency, nearly transform-limited pulsed 2 μm laser was obtained. As much as 2.0 mJ output energy was achieved at an operating repetition rate of 15 Hz, with a pulse width of 356.2 ns.  相似文献   

6.
The lasing characteristics of Tm:LuAG at room temperature are reported. The maximum output power at 2.023-μm wavelength is 4.91 W and the slope efficiency is 25.39%. The mode matching between pump mode and laser mode is optimized by changing the pump beam waist radius and its location. Different output couplers are used to realize the optimal laser output. The relationship between operation temperature and output power is also discussed.  相似文献   

7.
The operating regime of longitudinal discharge copper vapour lasers   总被引:1,自引:0,他引:1  
This paper presents the results of experiments which study the behaviour of the copper vapour laser as a function of its major performance parameters: pulse repetition frequency and tube temperature. Explanations are put forward for the factors which limit the output from the copper laser at the extremes of these parameters. Generalized performance relationships and scaling laws are also presented. The experimental results are summarized in a contour map of laser efficiency.Part of this work was performed at the Clarendon Laboratory of the University of Oxford.  相似文献   

8.
9.
10.
We report the pulsed-diode-pumped and acoustics-optically Q-switched operation of a long-pulse-width Tm:YAG laser at room temperature. Output energy for single pulse of 48 mJ is obtained under the incident pump energy of 217.3 mJ, corresponding to a slope efficiency of 30.2% and an optical conversion efficiency of 22.1%. For the Q-switched regime, maximum pulse energy of 3.25 mJ and the pulse width of 232.8 ns at the repetition rate of 30 Hz are achieved. The wavelength of the Q-switched laser is 2.013 μm. A beam quality factor of M 2 < 1.4 is measured using the traveling 90/10 knife-edge method.  相似文献   

11.
High-efficiency continuous-wave (CW) Tm:YLF laser by the dual-end-pumping configuration is presented. Under the total input pump power of 24.0 W, the highest output power reaches 9.8 W in the wavelength range of 1910 - 1926 nm by use of 10% output coupling, corresponding to optical conversion efficiency of 40.9% and slope efficiency of 51.4%. The free-running laser spectrum of Tm:YLF is measured.  相似文献   

12.
In this paper, we report the sono-synthesis of reduced graphene oxide (rGO) using polyethyleneimine (PEI), and its performance for ammonia vapour detection at room temperature. Graphene oxide (GO) and reduced graphene oxide (rGO) were prepared by sonication method by using low-frequency ultrasound under ambient condition and films were deposited by Doctor Blade method. The rGO, which has vapour accessible structure showed a good sensing response with a minimum detection limit of 1 ppm and the detection range from 1 ppm to 100 ppm. The sensing response was found to be 2% at 1 ppm and 34% at 100 ppm of ammonia and the developed sensor operated at room temperature. The sensor displays a response time of 6 s and a recovery time of 45 s towards 100 ppm of ammonia vapour. The source for the highly sensitive, selective and stable detection of ammonia with negligible interference from other vapours is discussed and reported. We believe reduced graphene oxide (rGO) could potentially be used to manufacture a new generation of low-power portable ammonia sensors.  相似文献   

13.
L. Huang  M. Gong  L. Ke  J. Liu 《Laser Physics》2009,19(7):1395-1398
A new compact high efficient diode-double-passing-pumped Tm:YLF laser at room temperature is presented. Using a crystal of 3 mm × 3 mm × 12 mm 4% doping Tm:YLF and double-end-double-passing pumping cavity structure without complex optical splitter pumping system, 5.6 W CW 1907.6 nm laser is obtained at 26.2 W 792 nm pumping laser. The slope efficiency is as high as 37.8% and the spectrum width is 2 nm. The relationship between cavity length and output laser is also analyzed. Experiments verify that the highest energy and convertion efficiency can be reached by optimizing the oscillator cavity length. Finally, we used this Tm:YLF laser to pump Ho:YAG crystal at room temperature and achieved 1.65 W 2.1 μm output laser with slope efficiency 67%.  相似文献   

14.
Thin films of SrFe12O19, BaFe12O19, Pb0.76La0.16 0.08Zr0.53Ti0.47O3and Sr0.3Ba0.7Nb2O6 were grown on monocrystalline silicon substrates by pulsed laser deposition using a 20-ns Nd:YAG laser (1064 nm). The deposited thin films were analyzed by X-ray diffraction in the grazing incidence configuration. The analysis showed evidence of textured growth even though the films were grown at room temperature. Emission spectroscopy was used to establish the time of flight of the species within the plasma plume. Velocities of the order of 106 cm/s were obtained. The high kinetic energy of the species is thought to be responsible for the film texture, as it is released in the substrate–film system, favoring a preferential growth. For all the ablated ceramics, singly ionized species were shown to expand at higher velocities than neutrals. For ions, no consistency in the mass–speed relation was obtained, suggesting both the presence of electric fields during the plasma formation and an evaporation of the target that depends on the vapor pressure of the elements. In this way species that are firstly evaporated will be attracted strongly by fast electrons, allowing heavy ions to acquire higher velocities than lighter ones. PACS 81.15.Fg; 52.38.Mf; 68.55.Jk; 52.38.Kd; 52.70.Kz  相似文献   

15.
By using two solid uncoated etalons, we present a diode-pumped linear-polarized single-frequency Tm:YAG laser operating at 2 μm. Placing one 0.1 mm F-P etalon at nearly Brewster angle in the cavity, the linear-polarization laser is achieved. The other 1 mm F-P etalon was turned in the range of very small angle, single-longitudinal-mode (SLM) could be obtained. The maximum output power of linear-polarized single-frequency laser of 60 mW is achieved at the wavelength of 2013 nm. The degree of the polarization is over 30 dB. Long-term frequency stability was also investigated, with the results of wavelength fluctuation about 2.55 × 10−13 m within 3 min and frequency change about 18.86 MHz, corresponding to a frequency stability of 1.27 × 10−7.  相似文献   

16.
A high efficient diode-pumped Tm:YAP laser is reported. The maximum output power at 1981 nm is 5.2 W and the slope efficiency is 30%. Unpolarized absorption near 800 nm and unpolarized fluorescence spectra near 1800 nm pumped by laser diode (LD) are measured. In addition, the relationship between operation temperature and output power is discussed.  相似文献   

17.
Abstract

High pressure X-ray studies on CuH up to 23 GPa have been performed at room temperature using a gasketed diamond anvil cell. The experimental data on the molar volume of CuH as a function of pressure have been fitted to Murnaghan's equation of state giving a bulk modulus: B0 = 72.5±2 GPa and B0 = 2.7 ± 0.3. By comparison with the equation of state for pure copper the effective additive volume of hydrogen has been evaluated as a function of pressure. It decreases from 3.2 cm3/mol H, at ambient pressure reaching a flattening value of 1.7cm3hol H at about 60 GPa. This suggests a continuous transition of CuH from ionic or covalent character at normal pressure to metallic hydride behavior at high pressure  相似文献   

18.
The sub-Doppler transmission spectrum in a thin vapour layer (about 150 μm) was observed at room temperature using the wavelength modulation technology. The absorption signal and its second-order harmonic were detected with an external-cavity diode laser. A sub-Doppler spectrum corresponding to resonant transitions of the caesium D_2 line (6S_{1/2}→6P_{3/2}) was demonstrated. The dependence of the transmission signal on the intensity of the laser was also investigated.  相似文献   

19.
Low-threshold interband cascade lasers operating above room temperature   总被引:1,自引:0,他引:1  
Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a continuous wave output power of 140 mW/facet was obtained.  相似文献   

20.
Wu  C. T.  Ju  Y. L.  Zhou  R. L.  Duan  X. M.  Wang  Y. Z. 《Laser Physics》2011,21(2):372-375
We report on the single-longitudinal-mode Tm:YAG laser with a volume Bragg grating pumped by laser diode at room temperature. The maximum SLM power of 142 mW was achieved under incident pump power of 3.22 W. The central wavelength was 2012.6 nm accords with the resonant wavelength of the VBG. Three cavity lengths were used to achieve high efficiency and clear spectrum. The maximum output power were measured to be 450.5, 451.4, and 457.3 mW at incident pump power of 3.22 W, corresponding to a slope efficiency of 17.1, 16.9, and 16.7% for the cavity length of 30, 40, and 50 mm, respectively. 40 mm cavity length having the cleanest spectrum among the three was used for SLM laser with one 1 mm F-P etalon inserted into the cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号