首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For over 30 years complexes with the general formula [NiPh(P,O)L] (L = tertiary phosphine; P,O = chelating phosphanylenolato ligand) have been used as highly efficient oligomerisation catalysts suitable for the production of linear alpha-olefins. The same complexes, which are usually referred to as SHOP-type catalysts (SHOP = Shell Higher Olefin Process) can also be used as ethylene polymerisation catalysts, provided they are treated with a phosphine scavenger that selectively removes the tertiary phosphine ligand (L). This Perspective examines the impact of various parameters (influence of the substituents, backbone size, solvent, use of co-catalysts, etc.) on the catalytic outcome of the complexes. Overall, this review shows that the selectivity and activity of the catalyst may be tuned efficiently through directed modification of the P,O chelator.  相似文献   

2.
The cationic rare earth metal aminobenzyl complexes bearing mono(pyrrolyl) ligands are synthesised and structurally characterised, and the coordination mode of the pyrrolyl ligands is found to show significant influence on the polymerisation of styrene.  相似文献   

3.
The synthesis, characterisation and catalytic behaviour of new iron bis(imino)pyridyl complexes containing dendritic wedges, as well as the synthesis of bis(para-hydroxyphenylimino)pyridines is described. The hydroxyl functionality of the bis(para-hydroxyphenylimino)pyridines was used to attach dendritic wedges of the carbosilane type as well as the benzylphenyl ether type. After attachment of the dendritic wedges, complexation of these ligands to iron(II) chloride was achieved. The resulting dendritically functionalised bis(imino)pyridyl iron complexes were tested in the catalytic oligomerisation of ethene.  相似文献   

4.
The syntheses of ketimide titanium complexes of the type Ti(NCtBu2)3X (X = Cl, Cp, Ind), Ti(NCtBu2)4 and the zirconium complex CpZr(NCtBu2)2Cl are described. When activated by MAO, all compounds are ethylene polymerisation catalysts. In the conditions studied, the most active catalyst is CpZr(NCtBu2)2Cl, with an activity of 2.7 × 105 kg/(molZr [E] h). Titanium complexes are less active by about two orders of magnitude. The polyethylene produced is linear, as determined by NMR spectroscopy. Molecular structures of Ti(NCtBu2)3X (X = Cl, Cp, Ind) and Ti(NCtBu2)4 were determined by X-ray single crystal diffraction.  相似文献   

5.
The silyl ethers 3-But-2-(OSiMe3)C6H3CH=NR (2a-e) have been prepared by deprotonation of the known iminophenols (1a-e) and treatment with SiClMe3 (a, R = C6H5; b, R = 2,6-Pri2C6H3; c, R = 2,4,6-Me3C6H2; d, R = 2-C6H5C6H4; e, R = C6F5). 2a-c react with TiCl4 in hydrocarbon solvents to give the binuclear complexes [Ti{3-But-2-(O)C6H3CH=N(R)}Cl(mu-Cl3)TiCl3] (3a-c). The pentafluorophenyl species 2e reacts with TiCl4 to give the known complex Ti{3-But-2-(O)C6H3CH=N(R)}2Cl2. The mononuclear five-coordinate complex, Ti{3-But-2-(O)C6H3CH=N(2,4,6-Me3C6H2)}Cl3 (4c), was isolated after repeated recrystallisation of 3c. Performing the dehalosilylation reaction in the presence of tetrahydrofuran yields the octahedral, mononuclear complexes Ti{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (5a-e). The reaction with ZrCl4(THF)2 proceeds similarly to give complexes Zr{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (6b-e). The crystal structures of 3b, 4c, 5a, 5c, 5e, 6b, 6d, 6e and the salicylaldehyde titanium complex Ti{3-But-2-(O)C6H3CH=O}Cl3(THF) (7) have been determined. Activation of complexes 5a-e and 6b-e with MAO in an ethene saturated toluene solution gives polyethylene with at best high activity depending on the imine substituent.  相似文献   

6.
The diastereomerically pure P-stereogenic bis(phosphinimine) ligands 4,6-(ArN[double bond, length as m-dash]PMePh)(2)dbf [Ar = 4-isopropylphenyl (Pipp): rac-4, meso-4; Ar = 2,6-diisopropylphenyl (Dipp): rac-4a; dbf = dibenzofuran] were synthesised and complexed to zinc using a protonation-alkane elimination strategy. The cationic alkylzinc complexes thus obtained, RZn[4,6-(ArN[double bond, length as m-dash]PMePh)(2)dbf][B(Ar')(4)] [Ar = Pipp, Ar' = C(6)H(3)(CF(3))(2): rac-6 (R = Et), meso-6 (R = Et), rac-7 (R = Me) meso-7 (R = Me); Ar = Dipp: rac-6a (R = Et, Ar' = C(6)H(3)(CF(3))(2)), rac-6b (R = Et, Ar' = C(6)F(5))] were investigated for their competency as initiators for the ring-opening polymerisation of rac-lactide. The formation of polylactide was achieved under relatively mild conditions (40 °C, 2-4 h) and the microstructures of the resulting polymers exhibited a slight heterotactic bias [polymer tacticity (P(r)) = 0.51-0.63].  相似文献   

7.
A range of aryloxy and alkoxy ligands, both monodenate and chelating, have been coordinated to Ti(IV) to yield complexes of the form [Ti(OAr)(2)Cl(2)], [Ti(RO^O)Cl(3)] and [Ti(RO^O)(2)Cl(2)] (R = aryl, alkyl). The complexes vary in their Lewis base solvation and/or aggregation state, as revealed by X-ray crystallography of selected examples. The complexes have been evaluated as catalysts for ethylene oligomerisation and polymerisation following activation with alkylaluminium reagents (AlEt(3), methylaluminoxane). While polyethylene is the major product, ethylene oligomers also result, ranging from dimers to higher oligomers. The results indicate a number of different active species are formed upon activation, with oligomers likely arising through a metallacyclic mechanism. The findings are discussed in the context of the commercial Alphabutol dimerisation system [Ti(OR)(4)], and the development of group 4 based ethylene trimerisation catalysts.  相似文献   

8.
A series of distorted octahedral Cr(III) complexes containing tridentate S-, S/O- or N-donor ligands comprised of three distinct architectures: facultative {S(CH(2)CH(2)SC(10)H(21))(2) (L(1)) and O(CH(2)CH(2)SC(10)H(21))(2) (L(2))}, tripodal {MeC(CH(2)S(n)C(4)H(9))(3) (L(3)), MeC(CH(2)SC(10)H(21))(3) (L(4))} and macrocyclic {(C(10)H(21))[9]aneN(3) (L(5)), (C(10)H(21))(3)[9]aneN(3) (L(6)), with [9]aneN(3)=1,4,7-triazacyclononane} are reported and characterised spectroscopically. Activation of [CrCl(3)(L)] with MMAO produces very active ethylene trimerisation, oligomerisation and polymerisation catalysts, with significant dependence of the product distribution upon the ligand type present. The properties of the parent [CrCl(3)(L)] complexes are probed by cyclic voltammetry, UV-visible, EPR, EXAFS and XANES measurements, and the effects upon activation with Me(3)Al investigated similarly. Treatment with excess Me(3)Al leads to substitution of Cl ligands by Me groups, generation of an EPR silent Cr species (consistent with a change in the oxidation state of the Cr to either Cr(II) or Cr(IV)) and substantial dissociation of the neutral S and S/O-donor ligands.  相似文献   

9.
The cationic chiral Lewis acids 1 and 2, generated by triflic acid protonation of the corresponding neutral oxazaborolidines, serve as excellent catalysts for Diels-Alder addition of cyclopentadiene to a wide variety of dienophiles. Adducts have been obtained in excellent yield and enantioselectivity from alpha,beta-unsaturated esters, lactones, and cyclic ketones. The absolute facial selectivity for each of these substrates follows a common pattern which differs from that observed with alpha,beta-enals. The different reaction channels can be understood in terms of pathways via complexes 3 (for alpha,beta-enals) and 4 (for alpha,beta-enones and esters).  相似文献   

10.
Among a large variety of fine-tuning parameters for homogeneous catalysts the net charge of transition-metal complexes appear to be an interesting factor that considerably affects activation of substrates and catalytic activity in general. The electrophilicity of coordinated alkenes in transition-metal complexes can be strongly enhanced by increasing the positive net charge, resulting in strong carbocationic properties. Theoretical and experimental studies have shown that the alkene in cationic complexes is kinetically and thermodynamically more activated towards nucleophilic addition than in neutral complexes. The concept of increasing the positive complex charge is thought to be useful for the development of new catalysts for reactions in which alkenes or other unsaturated substrates are involved.  相似文献   

11.
12.
A series of bis(thiazolinyl)- and bis(thiazolyl)pyridine Thio-Pybox ligands and their metal complexes of chromium(III), iron(II), cobalt(II) and nickel(II) has been prepared, as well as a nickel(II) complex containing a monoanionic bis(thiazolinyl)phenyl Thio-Phebox ligand. These new metal complexes have been characterised and used as catalysts, in combination with the co-catalyst MAO, for the polymerisation of ethylene and for the polymerisation of butadiene. In the case of ethylene polymerisation, the Thio-Pybox and Thio-Phebox metal complexes have shown relatively low polymerisation activities, much lower compared to the related bis(imino)pyridine complexes of the same metals. In the polymerisation of butadiene, several Thio-Pybox cobalt(II) complexes show very high activities, significantly higher than the other metal complexes with the same ligand. It is the metal, rather than the ligand, that appears to have the most profound effect on the catalytic activity in butadiene polymerisation, unlike in the polymerisation of ethylene, where bis(imino)pyridine ligands provide highly active catalysts for a range of 1st row transition metals.  相似文献   

13.
Different types of tridimensional polymer networks have been synthetised by photoinitiated cationic polymerisation of vinyl ether and epoxy-functionalised oligomers and polymers. The polymerisation kinetics was followed by real-time infrared (RTIR) spectroscopy, a technique that records directly conversion versus time profiles in a timescale as short as 1 s. The addition of a diacrylate monomer was shown to accelerate the ring-opening polymerisation of epoxidized polyisoprene, with formation of interpenetrating polymer networks having well contrasted properties. A dual polymer network has been generated by photocrosslinking of a polyisoprene functionalised with both epoxy and acrylate groups.  相似文献   

14.
Three SHOP-type catalysts, in which the C=C(O) double bond was substituted by electron-withdrawing substituents, [Ni{Ph2PC(R1)=C(R2)O}Ph(PPh3)] (2: R1,R2 = -C(Me)=NN(Ph)-; 3: R1 = CO2Et, R2 = Ph; 4: R1 = CO2Et, R2 = CF3), were assessed as ethylene-oligomerisation and -polymerisation catalysts and compared to Keim's complex, [Ni{Ph2PCH=C(Ph)O}Ph(PPh3)] (1). A rationale for the influence of the double-bond substituents of the P,O-chelate unit on the catalytic properties is proposed, on the basis of X-ray diffraction studies, spectroscopic data and DFT-B3 LYP calculations. Whatever their relative electron-withdrawing strength, the R1 and R2 substituents induce an increase in activity with respect to catalyst 1. For those systems in which the basicity of the oxygen atom is decreased relative to that of the phosphorus atom, the chain-propagation rate increases with respect to that for catalyst 1. Reduction of the basicity of the P relative to that of the O, however, induces higher chain-termination rates.  相似文献   

15.
The generation of poly(p-methoxystyrene) with a molar mass of several thousand g mol(-1) by cationic polymerisation in emulsion, is described here for the first time. Such a striking result was achieved by carrying out the polymerisation inside monomer droplets, thus preventing fast transfer reactions with water.  相似文献   

16.
Six iron complexes (FeCs) with various ligands have been designed and synthesized. In combination with additives (e.g., iodonium salt, N‐vinylcarbazole, amine, or chloro triazine), the FeC‐based systems are able to efficiently generate radicals, cations, and radical cations on a near UV or visible light‐emitting diode (LED) exposure. These systems are characterized by an unprecedented reactivity, that is, for very low content 0.02% FeC‐based systems is still highly efficient in photopolymerization contrary to the most famous reference systems (Bisacylphosphine oxide) illustrating the performance of the proposed catalytic approach. This work paves the way for polymerization in soft conditions (e.g., on LED irradiation). These FeC‐based systems exhibit photocatalytic properties, undergo the formation of radicals, radical cations, and cations and can operate through oxidation or/and reduction cycles. The photochemical mechanisms for the formation of the initiating species are studied using steady state photolysis, cyclic voltammetry, electron spin resonance spin trapping, and laser flash photolysis techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 42–49  相似文献   

17.
The 2-imino-1,10-phenanthroline ligands, 1,10-C12H7N2-2-CRN(2,6-i-Pr2-4-R1-C6H2) [R = R1 = H (L1); R = H, R1 = Br (L2); R = H, R1 = CN (L3); R = H, R1 = i-Pr (L4); R = Me, R1 = H (L5); R = Me, R1 = i-Pr (L6)], have been prepared in high yield from the condensation reaction of 1,10-C12H7N2-2-CRO (R = H, Me) with one equivalent of the corresponding 4-substituted 2,6-diisopropylaniline. The molecular structures of L2, L5 and L6 reveal the imino nitrogen atoms to adopt a transoid configuration with respect to the phenanthrolinyl nitrogen atoms. Treatment of Lx with one equivalent of CoCl2 in n-BuOH at 90 °C gives the high spin complexes, (Lx)CoCl2 [Lx = L1 (1a), L2 (1b), L3 (1c), L4 (1d), L5 (1e), L6 (1f)], in which the metal centres exhibit distorted square pyramidal geometries. Activation of 1a-1f with excess methylaluminoxane (MAO) gives catalysts that are modestly active for the oligomerisation of ethylene affording mainly linear α-olefins along with some degree of internal olefins. While the donor capability of the 4-position of the N-aryl group does not appear to affect the activity of the catalyst, it does have an influence on the ratio of α-olefins to internal olefins. Single crystal X-ray diffraction studies have been performed on L2, L5, L6, 1a, 1c and 1f.  相似文献   

18.
The ethylene polymerisation activity of [(Ind)2TiMe]BPh4 decreases with decreasing solvent polarity but is enhanced if BPh4 is replaced by the less basic anion [B{C6H3(CF3)2}4]. The reaction of [PhNHMe2]BPh4 with Cp*2TiMe2 gives [Cp*2TiMe]BPh4, the first isolable 14-electron titanium alkyl cation complex (Ind = indenyl, Cp* = C5Me5).  相似文献   

19.
Stability constants (K(ijk)) of complexes Na(i)K(j)H(k)L(+i+j+k-2) (0相似文献   

20.
The first synthesis of achiral and chiral [ONNO']-type Salan ligands featuring two different phenol arms, and the diastereoselective formation of the corresponding octahedral C1-symmetric zirconium complexes is described; the activity and isospecificity induction of the [ONNO']Zr(bn)2 complexes in 1-hexene polymerisation reflected those of the parent symmetric compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号