首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intercalation of various cations into layered MnPS3 induces some disorder in the local structure of Mn(II) cations, observable by EXAFS at the manganese K edge. The amplitude of this disorder effect is correlated with the amplitude of the weak ferromagnetism also observed at low temperature in the intercalates.  相似文献   

2.
Interaction between amphotericin B(AmB) and cell membrane is influenced by different metal cations. In the presence of K+, Na+ or Ca2+ ions, the surface pressure-area isotherms and the elastic modulus of an amphotericindipalmitoylphosphatidylcholine(AmB-DPPC) mixed monolayer were discussed. And the excess free energy and entropies of mixing were calculated according to the surface pressure-area isotherms. The phase transition of the mixed monolayer needed a higher concentration of AmB in the sequence Na+ > pure buffer > K+ > Ca2+. When the molar fraction of AmB(xAmB) was 0.5, the molecular interaction changed from attraction to repulsion and the mixed monolayer turned to ordered state from disorder state under the induction of K+ or Ca2+ ions at all surface pressure in our experiment. At high surface pressure, the disorder of monolayer enhanced in the presence of Na+ ions at xAmB > 0.1. At different molar ratios of AmB, the influences of these metal cations were discrepant. These cations may influence AmB molecules to form pores on the monolayer. It is helpful to understand the reduction of AmB's toxicity as theoretical reference.  相似文献   

3.
The crystal structure of NF4BF4 has been reexamined. The low-temperature X-ray structure and solid-state 19F MAS NMR spectra are in agreement with the conclusions reached from the vibrational spectra, that solid NF4+ salts contain only tetrahedral NF4+ cations. The alleged observation of two kind of nontetrahedral NF4+ cations in several previous crystal structures is attributed to incorrectly solved structures and, possibly, problems caused by disorder or twinning. It is further evidence for the dangers of over-reliance on crystal structures. Flawed crystal structures can give rise to either bad or unwarranted theory.  相似文献   

4.
The crown ether capped metalloporphyrins (6) form complexes with metal cations; complex formation may be detected by fluorescence quenching for (6, M=ZnII or CuII) and paramagnetic guest cations or, in some cases, by FAB mass spectrometry. Complexation with alkyl ammonium cations was also examined using absorption spectrometry.  相似文献   

5.
The effects of cations on the absorption spectra of silver sols have been investigated by the UV-vis spectrometry and TEM. Experiments showed that injection of certain amounts of transition metal cations into silver sols resulted not only in the aggregation of silver nanoparticles but also in the appearance of a new band centered near 510 nm in the absorption spectra of silver sols. However, the new band was not observed in the presence of alkaline earth metal cations or the Mv2+ cations. The peak position of the new band depends on the nature as well as the concentration of metal cations used. Comparing the peak positions of the new bands, it was found that the new band induced by the injection of Cr3+ was red-shifted with respect to those induced by Cu2+, Zn2+, or the Cd2+ cations. It is reasonable that this band near 510 nm should be attributed to the coeffects of the adsorption of metal cations onto the surfaces of silver nanoparticles and the aggregation of silver nanoparticles.  相似文献   

6.
The process of formation of magnetite nanoparticles has been investigated by liquid chromatography and mass spectroscopy in the liquid phase decomposition of either Fe(III) acetylacetonate with decanoic acid or Fe(III) decanoate. In both cases, the dissociation into radicals of the iron carboxylate bonds provides the reduction of the Fe(III) cations and the oxygen atoms required for the formation of the mixed-valence inverse spinel magnetite structure. A reaction mechanism is proposed. It is also shown that the reaction of free decanoic acid with the Fe(III) cations in solution promotes the growth of faceted particles at the reflux temperature of the solvent (ca. 280 °C), while, under the same conditions, the stepwise decomposition of the Fe(III) decanoate generates smaller and pseudo-spherical particles. The latter also yields faceted particles when the temperature is increased above that of the total decomposition of the salt. Magnetic measurements make evident that the reaction starting from Fe(III) acetylacetonate yields nanoparticles with higher magnetization and lower spin disorder, due to the improved regularity of the surface crystal structure. The starting conditions for the decarboxylation process thus affect the morphology and magnetic properties of the resulting nanoparticles.  相似文献   

7.
Structural varieties of L-arginine trifluoroacetate (abbreviated as LATF) and L-arginine bis(trifluoroacetate), LABTF, in the solid state compounds were observed and analyzed by the nuclear magnetic resonance (NMR) spectroscopy. The guanidinium-carboxylate interaction plays an important role involving in the crystal structure construction. Conformational changes of L-Arg(+) and L-Arg(2+) cations result from the intrinsic structural difference by hydrogen bonding and electrostatic interactions. The low-temperature structure of its crystalline salt, L-arginine bis(trifluoroacetate), was determined to describe the hydrogen bonding interactions. In comparison with the crystal structure at room temperature, the low-temperature L-Arg(2+) cations present tiny conformational difference and the rotational disorder of CF(3) group disappears. FT-IR and Raman spectra were investigated and hydrogen bonding interactions were analyzed on the basis of its vibrational spectra. Results indicate that this type interaction is greatly contributive to the structural features and vibrational spectral properties.  相似文献   

8.
A supramolecular cation of (m-FAni(+))(DB[18]crown-6), where m-FAni(+) and DB[18]crown-6 denote m-fluoroanilinium(+) and dibenzo[18]crown-6, respectively, which is the polar unit rotating in the ferroelectric crystal of (m-FAni(+))(DB[18]crown-6)[Ni(dmit)(2)](-), was introduced into a ferromagnetic [MnCr(oxalate)(3)](-) salt as the counter cation. The crystal structure of (m-FAni(+))(DB[18]crown-6)[MnCr(oxalate)(3)](-)(CH(3)OH)(CH(3)CN) (1) is constructed from alternating layers of a two-dimensional honeycomb layer of [MnCr(oxalate)(3)](-) and (m-FAni(+))(DB[18]crown-6) supramolecular cations. The anionic layer is composed of Mn(II) and Cr(III) ions with S = 5/2 and S = 3/2 spins, respectively, bridged by the oxalate anions, which show ferromagnetic ordering at 5.5 K. The supramolecular structure is formed through the formation of hydrogen bonds between the ammonium hydrogen atoms of the m-FAni(+) cations and the oxygen atoms of the DB[18]crown-6 cavity. No orientational disorder of the fluorine atoms was observed in our X-ray structural analysis, suggesting that a two-fold flip-flop motion of the m-FAni(+) cations does not occur in the salt. The rotational freedom of the m-FAni(+) cations in the salt is restricted by the steric hindrance from neighbouring DB[18]crown-6 molecules. A design strategy for the rotation in a salt is discussed, based on the volume that the supramolecular cations occupy in the unit cell.  相似文献   

9.
Inorganic anions and cations in environmental waters were determined by ion chromatography. Stationary and mobile phases were examined for the simultaneous separation of both anions and cations. Cations detection by UV detection requires a mobile phase with a UV absorbing additive, which indirectly visualizes cations as negative peaks. Simultaneous separation of anions and cations were achieved when using an eluent that consists of inorganic acid with weak basic amino acid as additives. It was convenient to separate both anions and cations by coupling anion-exchange and cation-exchange columns in tandem. The order of the separation columns connected affected the elution profiles. When the eluent comprises of multiple anions and a single cation, the anion-exchange column should be connected in the upper stream, whereas when the eluent comprises multiple cations and a single anion, the cation-exchange column should be connected in the upper stream. Use of switching valves also allowed simultaneous separation of anions and cations in a single chromatographic run. In the present work, operating conditions were optimized for the simultaneous separation of anions and cations.  相似文献   

10.
《Comptes Rendus Chimie》2002,5(3):143-148
Preparation and dielectric characterisations of a great number of TTB-type ceramics have allowed us to show that some of them present relaxor behaviour, due to the occupation of the same crystallographic site by two different cations or anions. One of the cation in the octahedral site has to be ferroelectrically active. The relaxor effect is correlated to either cationic distribution disorder in the same site or dilution of the ferroelectric character.  相似文献   

11.
Lithium is used (in the form of soluble salts) to treat bipolar disorder and has been considered as a possible drug in treating chronic neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. One of the proposed mechanisms of Li(+) action involves a competition between the alien Li(+) and native Mg(2+) for metal-binding sites and subsequent inhibition of key enzymes involved in specific neurotransmission pathways, but not vital Mg(2+) proteins in the cell. This raises the following intriguing questions: Why does Li(+) replace Mg(2+) only in enzymes involved in bipolar disorder, but not in Mg(2+) proteins essential to cells? In general, what factors allow monovalent Li(+) to displace divalent Mg(2+) in proteins? Specifically, how do the composition, overall charge, and solvent exposure of the metal-binding site as well as a metal-bound phosphate affect the selectivity of Li(+) over Mg(2+)? Among the many possible factors, we show that the competition between Mg(2+) and Li(+) depends on the net charge of the metal complex, which is determined by the numbers of metal cations and negatively charged ligands, as well as the relative solvent exposure of the metal cavity. The protein itself is found to select Mg(2+) over the monovalent Li(+) by providing a solvent-inaccessible Mg(2+)-binding site lined by negatively charged Asp/Glu, whereas the cell machinery was found to select Mg(2+) among other competing divalent cations in the cellular fluids such as Ca(2+) and Zn(2+) by maintaining a high concentration ratio of Mg(2+) to its biogenic competitor in various biological compartments. The calculations reveal why Li(+) replaces Mg(2+) only in enzymes that are known targets of Li(+) therapy, but not in Mg(2+) enzymes essential to cells, and also reveal features common to the former that differ from those in the latter proteins.  相似文献   

12.
13.
Ten years after the first synthesis of neutral two-coordinated phosphorus in 1962, the first phosphenium cations were synthesized by Fleming, Lupton and Jekot in 1972. Up to now, though 30 years have passed, the members of these phosphenium cations are still very few. the research of phosphenium cations is only limited in France, America and other countries. In our laboratory work was done on a new unique cation: the 5-methylthio-3-N-phenyl-2,3-2(H)-1,3,4,2-thiadiazaphosphenium cation which was found and characterized by 261.9 ppm conclusively of ~(31)p NMR. It also has an electric conductivity in nucleophilic and electrophilic reactions. We are interested in noticing that these phospbenium cations are stabilized by one sulfur atom besides nitrogen atoms.  相似文献   

14.
Magnetic properties of the Al1−xGaxFeO3 family of oxides crystallizing in a non-centrosymmetric space group have been investigated in detail along with structural aspects by employing X-ray and neutron diffraction, Mössbauer spectroscopy and other techniques. The study has revealed the occurrence of several interesting features related to unit cell parameters, site disorder and ionic size. Using first-principles density functional theory based calculations, we have attempted to understand how magnetic ordering and related properties in these oxides depend sensitively on disorder at the cation site. The origin and tendency of cations to disorder and the associated properties are traced to the local structure and ionic sizes.  相似文献   

15.
We have examined the adsorption of n-pentane in several representative zeolites such as silicalite (MFI), ferrierite (FER), zeolite L (LTL), and faujasite zeolites with FAU structure including siliceous Y (Si-Y) and Na-Y by using FT-Raman spectroscopy in combination with thermogravimetric analysis (TGA) with particular attention being paid to the conformational and dynamic behavior of the guest molecule. The results indicate that the framework topology mainly dictates the conformation of n-pentane in a zeolite. For the zeolites with channel systems such as silicalite, ferrierite, and zeolite L, the population of the all-trans conformer increases upon loading, given that the geometry of the isomer fits better in the channel. When n-pentane is adsorbed in zeolites with a large cavity, such as Si-Y and Na-Y, the distribution of the all-trans (TT) and trans-gauche (TG) conformers is similar to that of pure liquid, suggesting that the large supercage in the framework imposes minimal effect on the conformational equilibrium. The dynamics of the guest molecule is, however, influenced significantly by the existence of cations. Adsorption of n-pentane in a siliceous framework such as silicalite and Si-Y results in extensive molecular motion at room temperature, the degree of which decreases with decreasing temperature. In zeolites ferrierite, L, and Na-Y, the presence of cations in the framework markedly hinders the overall molecular motion. The cations clearly play a role in the observed static disorder of the guest molecule in zeolite L. Important information regarding the location of the n-pentane molecules within silicalite and ferrierite is also obtained.  相似文献   

16.
Exceptionally high affinity for cesium cations was achieved in aqueous solution using two enantiopure cryptophanes. Complexation of cesium was evidenced by (133)Cs NMR spectroscopy and by electronic circular dichroism (ECD). Binding constants as high as 6 × 10(9) M(-1) have been measured by isothermal titration calorimetry (ITC). Very strong complexation of rubidium cations (K ~10(6) M(-1)) has also been measured. Chiral hosts allowed the detection of the two cations at low concentrations (μM) using ECD.  相似文献   

17.
The geometries and energetics of complexes of Li(+), Na(+), K(+), Be(2+), Mg(2+), and Ca(2+)metal cations with different possible uric acid anions (urate) were studied. The complexes were optimized at the B3LYP level and the 6-311++G(d,p) basis set. Complexes of urate with Mg(2+), and Ca(2+)metal cations were also optimized at the MP2/6-31+G(d) level. Single point energy calculations were performed at the MP2/6-311++G(d,p) level. The interactions of the metal cations at different nucleophilic sites of various possible urate were considered. It was revealed that metal cations would interact with urate in a bi-coordinate manner. In the gas phase, the most preferred position for the interaction of Li(+), Na(+), and K(+) cations is between the N(3) and O(2) sites, while all divalent cations Be(2+), Mg(2+), and Ca(2+) prefer binding between the N(7) and O(6) sites of the corresponding urate. The influence of aqueous solvent on the relative stability of different complexes has been examined using the Tomasi's polarized continuum model. The basis set superposition error (BSSE) corrected interaction energy was also computed for complexes. The AIM theory has been applied to analyze the properties of the bond critical points (electron densities and their Laplacians) involved in the coordination between urate and the metal cations. It was revealed that aqueous solvation would have significant effect on the relative stability of complexes obtained by the interaction of urate with Mg(2+) and Ca(2+)cations. Consequently, several complexes were found to exist in the water solution. The effect of metal cations on different NH and CO stretching vibrational modes of uric acid has also been discussed.  相似文献   

18.
The two title compounds, potassium diaquacobalt(II) borodiphosphate 0.48‐hydrate and potassium–calcium(0.172/0.418) diaquacobalt(II) borodiphosphate monohydrate, were synthesized hydrothermally. They are new members of the borophosphate family characterized by [BP2O8]3− helices running along [001] and constructed of boron (Wyckoff position 6b, twofold axis) and phosphorus tetrahedra. The [CoBP2O8] anionic frameworks in the two materials are structurally similar and result from a connection in the ab plane between the CoO4(H2O)2 coordination octahedra (6b position) and the helical ribbons. Nevertheless, the two structures differ in the disorder schemes of the K,Ca and H2O species. The alkali cations in the structure of the pure potassium compound are disordered over three independent positions, one of them located on a 6b site. Its framework is characterized by double occupation of the tunnels by water molecules located on twofold rotation axes (6b) and a fraction of alkali cations; its cell parameters, compared with those for the mixed K,Ca compound, show abnormal changes, presumably due to the disorder. For the K,Ca compound, the K and Ca cations are on twofold axes (6b) and the channels are occupied only by disordered solvent water molecules. This shows that it is possible, due to the flexibility of the helices, to replace the alkali and alkaline earth cations while retaining the crystal framework.  相似文献   

19.
The structure of BaThF(6) has been investigated as a function of temperature and pressure with single-crystal X-ray diffraction using synchrotron radiation. The compound crystallizes in the tysonite structure, space group P6(3)/mmc (a = 4.296(1) ? and c = 7.571(1) ? at ambient conditions). It is stable at least down to 150 K and up to 4 GPa. In the entire range of pressures and temperatures studied here, the compound is characterized by a high degree of disorder, both on the cationic and anionic positions. Despite the different valence states and sizes, both cations occupy the same crystallographic site in the ideal tysonite structure. The cationic disorder is described by two alternative approaches. The first model corresponds to a split-atom position model in which Ba(2+) is maintained on a special position with site symmetry 6m2, while Th(4+) is slightly displaced from the respective position. In the second model, both cations are maintained on the ideal position and anharmonic displacement parameters using a tensor of third order are introduced. Anharmonic displacement parameters have been refined from high-pressure single-crystal X-ray data measured in situ in a diamond anvil cell for the first time. The feasibility and general problems of anharmonic refinements of high-pressure X-ray data are further commented.  相似文献   

20.
The first electronic transition (?←X?) of liquid water was studied from the perspective of the hydration of cations by analyzing the attenuated total reflection far-ultraviolet (ATR-FUV) spectra of the Group I, II, and XIII metal nitrate electrolyte solutions. The ?←X? transition energies of 1 M electrolyte solutions are higher (Li(+): 8.024 eV and Cs(+): 8.013 eV) than that of pure water (8.010 eV) and linearly correlate with the Gibbs energies of hydration of the cations. The increases in the ?←X? transition energies are mostly attributable to the hydrogen bond formation energies of water molecules in the ground state induced by the presence of the cations. The deviation from the linear relation was observed for the high charge density cations, H(+), Li(+), and Be(2+), which reflects that the electronic energies in the excited states are also perturbed. Quantum chemical calculations show that the ?←X? transition energies of the water-cation complexes depend on the hydration structures of the cations. The calculated ?←X? transition energies of the water molecules hydrating high charge density cations spread more widely than those of the low charge density cations. The calculated transition energy spreads of the water-cation complexes directly correlate with the widths of the ?←X? transition bands measured by ATR-FUV spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号