首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超临界流体传热综述   总被引:3,自引:0,他引:3  
超临界流体是温度和压力均高于临界点的流体,在临界点附近物体的粘性、密度、比热以及其它一些性质变化非常剧烈,处于超临界状态时物质的气液两相性质非常接近,这种特殊的物性使得超临界流体在诸多领域有着非常广泛的应用。总结了以前国内外学者对于超临界流体传热的研究,主要集中于CO2和水的实验研究,由众多实验表明换热恶化容易发生在赝临界点附近、高热流密度、低质量流量和向上流动的情况下,换热系数的峰值也出现在赝临界点附近,并随压力和温度的变化会有所改变。还对提出的一系列关联式进行比较和分析。  相似文献   

2.
The results of mathematical modeling of convection of a viscous incompressible liquid in a rectangular domain with sources of mass input and output are presented. A conjugate statement within the framework of the Boussinesq approximation is used. The regimes of forced and mixed convection in a domain have been investigated. The domain has two vertical walls and one horizontal wall of finite thickness, two zones of liquid input and output, and a free surface. A plane nonstationary problem within the framework of the Navier-Stokes model for the liquid phase and the heat conduction equation for the solid phase are considered. The distributions of the hydrodynamic parameters and temperatures characterizing the main regularities of the processes under investigation have been obtained. Circulation flows have been identified. The vortex formation mechanism and the temperature distribution in the solution domain under the regimes of forced and mixed convection and different locations of mass input and output zones have been analyzed. It has been found that natural convection should be taken into account when modeling convective heat transfer with Gr number values from 105 and higher.  相似文献   

3.
康奥峰  张鹏 《低温与超导》2012,40(3):1-7,35
在内径为2mm曲率为0.057的螺旋管内进行了超临界氮的对流换热实验,研究探讨了螺旋管入口温度、壁面热流密度对沿程壁面温度分布以及平均换热系数的影响,与前人关于螺旋管内常规流体流动换热的平均Nu的经验关系式进行了比较。并基于FLUENT软件进行了数值计算,并与实验结果进行了比较。分析表明,数值计算对壁面温度的预测有一定的适用性。  相似文献   

4.
5.
在内径为2mm的竖直细圆管内进行了向上流动的超临界对流换热实验。通过实验发现,质量流量、进口温度对壁面温度分布以及压降有很大影响;并讨论了换热发生增强和恶化的原因;用浮升力和热加速准则解释了其中的一些热流体现象。并基于FLUENT软件进行了数值计算,与实验结果进行比较,分析表明,数值计算预测壁面温度分布和压降有一定的适用性。  相似文献   

6.
采用数值模拟整场求解的方法对超临界液态天然气(LNG)在螺旋管汽化器中热流耦合传热进行研究,得到管壳程流体的流场、温度场。通过研究管、壳程流体质量流量对流体出口温度、管壳程换热系数的影响,揭示汽化器内流体-热耦合传热规律,为超临界高压汽化器设计提供参考。  相似文献   

7.
Special features of the tungsten wire (TW) heat transfer in supercritical water at P = 25 MPa and T ≤ 923 K are investigated, including the conditions of (WO3) n nanoparticle formation on the tungsten wire surface with the reaction kn〈W〉 + 3knH2O = k(WO3) n + 3knH2. Values of the heat transfer coefficient as a function of oxidation time and temperature were determined using the method of electric current flash heating of the tungsten wire. It has been found that due to WO3 dissolution in supercritical water, there occurs oxide recondensation from the tungsten wire surface onto other design elements of the setup, which is accompanied by formation of monoclinic and rhombic WO3, and also monoclinic FeWO4.  相似文献   

8.
Numerical simulation of convective-radiative heat transfer in an enclosure with a heat source in the presence of heat-conducting walls of the finite thickness was carried out. The distributions of both local (streamlines, temperature fields) and integral (mean Nusselt numbers at typical interfaces) characteristics describing specific features of the investigated process in a real range of the variation of determining parameters were obtained. The radiation influence scales at thermal modes formation were determined. The effect of transient factor on the fields development of both hydrodynamic and thermodynamic characteristics was analysed. Correlation ratios for determining the mean Nusselt number at solid-gas interfaces were obtained depending on the Grashof number. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 08-08-00402-a).  相似文献   

9.
在统计方法的基础上,对于池沸腾换热的传热机理提出了一个数学模型. 在没有增加新的经验常数的条件下,从该模型中可得到池沸腾热流密度是壁面过热度、活化穴最小与最大尺寸、流体的接触角与流体物理特性的函数. 该模型可以较好地解释润湿性如何影响沸腾热流密度. 对不同的接触角,模型预测的结果与实验相符合. 关键词: 池沸腾 传热 数学模型  相似文献   

10.
11.
Analysis is carried out to study the convection heat transfer in an upper convected Maxwell fluid at a non-isothermal stretching surface. This is a generalization of the paper by Sadeghy et al. [21] to study the effects of free convection currents, variable thermal conductivity and the variable temperature at the stretching surface. Unlike in Sadeghy et al., here the governing nonlinear partial differential equations are coupled. These coupled equations are transformed in to a system of nonlinear ordinary differential equations and are solved numerically by a finite difference scheme (known as the Keller-Box method) and the numerical results are presented through graphs and tables for a wide range of governing parameters. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study of nonlinear convection heat transfer.  相似文献   

12.
A system of equations describing time changes in the matrix elements of the density operator of a seven-level model of a molecule interacting with a light pulse taking into account spontaneous (including collective) decays of molecule excited states is suggested. Model parameters were selected to allow us to perform modeling of the photoisomerization of a molecule with two isomeric states with different stable proton positions on an intramolecular H-bond by numerically solving the suggested system of equations for density operator matrix elements. An analysis of the characteristic time dependences of the population of states of the model under consideration showed that proton phototransfer in the collective decay of various isomeric states of a molecule in an excited electronic state can be one of effective mechanisms of the photoisomerization of molecules whose structure is described by the model.  相似文献   

13.
Some methods of thermal regime control for three dimensional flows around a body due to the simultaneous impact of body rotation around the longitudinal axis, mass ablative surface, and heat transfer flow in the body shell material are considered. The solution to the dual formulation allows us to take into account the impact of nonisothermal shell wall on the characteristics of heat and mass transfer in the boundary layer. The effect of the body rotation and the injection of cooler gas on the characteristics of heat and mass exchange in a thermal protection material is analyzed.  相似文献   

14.
The numerical modeling of natural convection fluid flow and heat transfer in a quarter of gearwheel-shaped heat exchanger is carried out. The heat exchanger is included with internal active square bodies. These bodies have hot and cold temperatures with different thermal arrangements. Three different thermal arrangements are considered and showed with Case A, Case B and Case C. The CuO-water nanofluid is selected as operating fluid. The Koo-Kleinstreuer-Li (KKL) correlation is utilized to estimate the dynamic viscosity and thermal conductivity. In addition, the shapes of nanoparticles are taken account in the analysis. The Rayleigh number, nanoparticle concentration and thermal arrangements of internal active bodies are the governing parameters. The impacts of these parameters on the fluid flow, heat transfer rate, local and total entropy generation and heatlines are studied, comprehensively. The results show that the heat transfer rate enhances with increasing of Rayleigh number and nanoparticle concentration. Moreover, the thermal arrangement of internal active bodies has considerable effect on the heat transfer between heat sources and heat sinks. On the other hand, the total entropy generation enhances and decreases with increasing of Rayleigh number and nanoparticle concentration, respectively.  相似文献   

15.
16.
The point-source method is used to model physical fields. The error of this method is estimated. The results of testing the method are reported, which confirm its efficiency.  相似文献   

17.
A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. By using suitable transformations, the governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained with the shooting method. The effect of increasing Casson parameter is to suppress the velocity field. However the temperature is enhanced with the increasing Casson parameter.  相似文献   

18.
The effect of Hall current on the steady magnetohydrodynamics (MHD) flow of an electrically conducting, incompressible Burgers' fluid between two parallel electrically insulating infinite planes is studied. The MHD flow is generated by applying constant pressure gradient. An external uniform magnetic field normal to the disks is applied. The disks are kept at two different constant temperatures. Exact solutions are obtained for the governing momentum and energy equations. The effects of Hartmann number M, Reynolds number Re, Prandtl number Pr, Eckert number Ec, pressure gradient dp/dx and Hall parameter η are examined.  相似文献   

19.
We have created a fast algorithm for calculating the temperature profile in a living tissue treated by magnetic fluid hyperthermia. Our algorithm solves an equation by the finite difference method. This equation includes the “heat sink” and “K-effective” effects. The algorithm need not an initial solution and it has the peculiarity that it makes a recursive division of the network, reducing thus the calculation period 5–9 times.  相似文献   

20.
This paper deals with the evolution of infrared thermography into a powerful optical method to measure wall convective heat fluxes as well as to investigate the surface flow field behaviour over complex geometries. The most common heat-flux sensors, which are normally used for the measurements of convective heat transfer coefficients, are critically reviewed. Since the infrared scanning radiometer leads to the detection of numerous surface temperatures, its use allows taking into account the effects due to tangential conduction along the sensor; different operating methods together with their implementations are discussed. Finally, the capability of infrared thermography to deal with three complex fluid flow configurations is analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号