首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The results of experimental studies of the nonideal detonation of high-density, high-energy aluminum-ammonium perchlorate-organic fuel-HE compositions and of the blast waves it generates in a channel filled with air are presented. Aluminum-enriched compositions have high densities (up to 2 g/cm3) and high heats of explosion, nearly twice that for TNT. The studies were performed to work out scientific fundamentals of controlling nonideal detonation and to explore the possibility of creating new high-energy high-density formulations with an enhanced fugacity effect. The factors that enable controlling the nonideal detonation of such charges were determined. It was demonstrated that, at RDX contents above 15%, the detonation velocity increases linearly with the charge density while the critical detonation diameter decreases. Adjusting the density, HE content, ratio of the components makes it possible to vary the detonation velocity in high-density charges over a wide range, from 4 to 7 km/s. The experimental data were compared to the thermodynamically calculated velocity of ideal detonation. For the compositions under study, the pressure- time histories of the blast wave generated in a cylindrical tube by the expanding detonation products at different distances from the charge were measured. The results were compared to analogous data obtained under the same conditions for the detonation of the same mass of TNT (100 g). The parameters of blast waves generated by the test compositions are markedly superior to those characteristic of TNT: the pressure at the leading front of the wave and pressure impulse at a given distance from the charge were found to be 1.5–2.0 (or even more) times those observed for TNT. The TNT equivalency at pressures 30–60 atm has similar values. The TNT equivalencies in pressure and pressure impulse depend nonmonotonically on the distance from the charge, so far unclear why. It was established that the interaction between excess fuel and air oxygen during the expansion of detonation products contributes little to supporting the blast wave.  相似文献   

2.
The pressure at the front and the pressure impulse of blast waves generated in a cylindrical tube by the expanding products of the nonideal detonation of low-porosity charges prepared by pressing of fine-grained powders of aluminum, Teflon, and RDX were measured. The measured parameters are compared to the same parameters of blast waves produced by the detonation of TNT charges of identical mass. The relative quantities were used to evaluate the effectiveness of blast waves with respect to those generated by TNT. Mixed compositions differing in the shape (brand) of the aluminum powder particles and the ratio between the components at 30% RDX are studied. It is shown that, for the investigated compositions, the pressure at the leading front of the wave exceeds the pressure achieved during TNT explosion on average by 10–30%, almost independently of the distance traveled along the tube in the range from 0.8 to 3.8 m. The dependence of the wave amplitude on the particle shape and aluminum content was weak. In the same range of distances, the relative pulse pressure increases strongly, from 0.5 to 2.1 and higher, mainly due to an increase in the width of the wave. This result is of interest from the point of view of achieving a high pressure impulse of the blast wave in an area remote from the charge. The obtained data suggest that RDX mainly reacts in the detonation wave, with the chemical transformation of Teflon and aluminum in the detonation wave and near-to-charge zone occurring, if at all, to a small extent. On the contrary, as the blast wave front moves through the channel, the burning of aluminum in the fluoride formed during the decomposition of Teflon provides an appreciable support to the blast wave, causing a significant increase in the pressure impulse.  相似文献   

3.
Results of shock-dispersed-fuel (SDF) explosion experiments are presented. The SDF charge consisted of a spherical 0.5-g PETN booster surrounded by 1 g of fuel, either flake aluminum (Al) powder or TNT. The charge was placed at the center of a sealed chamber. Three cylindrical chambers (volumes of 6.6, 20, and 40 l with L/D = 1) and three tunnels (L/D = 3.8, 4.65, and 12.5) were used to explore the influence of chamber volume and geometry on completeness of combustion. Detonation of the SDF charge created an expanding cloud of explosion product gases and hot fuel (Al or TNT). When this fuel mixed with air, it formed a turbulent combustion cloud that consumed the fuel and liberated additional energy (31 kJ/g for Al or 15 kJ/g for TNT) over and above detonation of the booster (6 kJ/g) that created the explosion. Static pressure gauges were the main diagnostic. Pressure and impulse histories for explosions in air were much greater than those recorded for explosions in nitrogen—thereby demonstrating that combustion has a dramatic effect on the chamber pressure. This effect increases as the confinement volume decreases and the excess air ratio approaches values between 2 and 3.5.  相似文献   

4.
An experimental study of the characteristics of the explosion of mixtures of ammonium perchlorate, aluminum, and nitromethane with a large excess of aluminum (1.45 to 1.66 g/cm3 in density) confined in plastic enclosures and immersed in small elastic-wall reservoirs with water is conducted. It is shown that composite charges, 20 mm in diameter, surrounded by a water layer of thickness 20–30 cm and detonate in a nonideal detonation mode. High-speed cinematography records show the possibility of the intense mixing of the detonation products with the surrounding water and of the burning of excess aluminum particles in a heterogeneous cloud. The time scales of the development of secondary energy release by burning of aluminum particles in water are estimated. The possibility of controlling the characteristics of the pressure waves generated by the explosion, for example, by means of a preliminary bubbling of the water with air near the charge, is demonstrated.  相似文献   

5.
Multi-variant three-dimensional numerical simulations demonstrate the feasibility of the continuous- detonation process in an annular combustor of a ramjet power plant operating on hydrogen as fuel and air as oxidant in conditions of flight at a Mach number of M 0 = 5.0 and an altitude of 20 km. Conceptual schemes of an axisymmetric power plant, 400 mm in external diameter and 1.3 to 1.5 m in length, with a supersonic intake, divergent annular combustor, and outlet nozzle with a frusto-conical central body are proposed. Calculations of the characteristics of the internal and external flows, with consideration given to the finite rate of turbulent-molecular mixing of the fuel mixture components with each other and with the combustion products, as well as the finite rate of chemical reactions and the viscous interaction of the flow with the bounding surfaces, have shown that, in these flight conditions, the engine of such a power plant has the following performance characteristics: the thrust, 10.7 kN; specific thrust, 0.89 (kN s)/kg; specific impulse, 1210 s; and specific fuel?consumption 0.303 kg/(N h). In this case, the combustor can operate with one detonation wave traveling in the annular channel at an average velocity of 1695 m/s, which corresponds to a detonation wave rotation frequency of 1350 Hz. It is shown that, an operating combustor has regions with subsonic flow of detonation products, but the flow is supersonic throughout its outlet section.  相似文献   

6.
The propagation of one-dimensional detonations in hydrogen–air mixtures is investigated numerically by solving the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing scheme and a point implicit time marching algorithm. The hydrogen–air combustion is modelled with a 9-species, 19-step reaction mechanism. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation. Parametric studies for an equivalence ratio range of 0.4–2.0, initial pressure range of 0.2–0.8 bar and different degrees of detonation overdrive demonstrate that the detonation is unstable for low degrees of overdrive, but the dynamics of wave propagation varies with fuel–air equivalence ratio and pressure. For equivalence ratios less than approximately 1.2 and for all pressures, the detonation exhibits a short-period oscillatory mode, characterized by high-frequency, low-amplitude waves. Richer mixtures exhibit a period-doubled bifurcation that depends on the initial pressure. Parametric studies over a degree of overdrive range of 1.0–1.2 for stoichiometric mixtures at 0.42 bar initial pressure indicate that stable detonation wave propagation is obtained at the high end of this range. For degrees of overdrive close to one, the detonation wave exhibits a low-frequency mode characterized by large fluctuations in the detonation wave speed. The McVey–Toong short-period wave-interaction theory is in qualitative agreement with the numerical simulations; however, the frequencies obtained from their theory are much higher, especially for near-stoichiometric mixtures at high pressure. Modification of this theory to account for the finite heat-release time significantly improves agreement with the numerically computed frequency over the entire equivalence ratio and pressure ranges.  相似文献   

7.
Time resolved emission from the interaction of ultra-short (∼200 fs) laser pulses with aluminum and copper targets was investigated. Measurements show that emission from the laser produced plasma in air is significantly more intense than in near vacuum conditions and that the emission in air can extend for periods exceeding 100 ns. Modeling the laser–target–air coupling shows that the laser–target interaction can lead to blast wave shock waves being launched in the ambient air and that the emission from the shocked air dominates over emission from the target surface. The long term emission measurements in air are in agreement with the modeling results.  相似文献   

8.
含铝炸药水下爆炸性能的实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
对RS211、HL-1、HL-2这3种含铝炸药和TNT炸药进行了水下爆炸实验,测量了4种炸药水下爆炸冲击波压力剖面和气泡脉动周期,获得了4种炸药水下爆炸冲击波的峰值超压、冲量、能量和气泡能。实验结果表明,在所研究的范围内,与TNT炸药相比,含铝炸药的冲击波能量有明显增加,约为TNT炸药的1.20~1.35倍,气泡能有显著增加,约为TNT炸药的1.50~2.30倍,表明在炸药中加入铝粉对于提高炸药水中爆炸威力是有益的。  相似文献   

9.
水滴烧蚀多脉冲激光推进性能   总被引:3,自引:0,他引:3       下载免费PDF全文
 用实时的推力测试方法研究了水滴烧蚀模式多脉冲TEA CO2激光推进的推进性能。用纹影法研究了伴随水滴烧蚀产生的激波等流场变化过程。多脉冲激光推进的比冲和冲量耦合系数等性能参数随激光脉冲重复频率的变小和脉冲数目的增加而逐渐下降。与激光传输相反和相同方向的激波传播最大速度分别为10 km/s和7 km/s。与纹影法结果同步获得的推力曲线表明:汽化过程对推力的形成过程贡献最大,激波也对推力的形成过程有一定贡献。  相似文献   

10.
空气中激光支持爆轰波实验及理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究激光击穿空气产生的等离子体爆轰波形成机制和传播规律,利用高能量CO2激光器产生强激光,进行了空气中产生激光支持等离子体爆轰波实验。实验中:设置了诱导靶板,用于诱发和定位空气中的激光支持爆轰波;以激光器升压过程球隙放电产生的光信号作为触发源,触发高时间分辨率(纳秒级)的高速相机,记录了激光支持爆轰波的成长和传播全过程。分析了激光支持爆轰波的形成机理和传播规律。采用C-J爆轰理论,计算了激光支持爆轰波的压力和温度。研究结果表明:激光支持等离子体爆轰波形成初期,等离子体爆轰波发光体为球形;随着时间增加,等离子体爆轰波发光体的形状类似流星,且头部为等离子体前沿吸收层,亮度较高,而尾部等离子体温度较低,亮度较弱。等离子体爆轰波高速向激光源的方向移动,爆轰波速度高达18 km/s,温度约为107K。随着激光强度的减弱,爆轰波速度迅速按指数规律衰减,当爆轰波吸收的激光能量不能有效支持爆轰波传播时,爆轰波转变为冲击波。  相似文献   

11.
Detonation development inside spark ignition engines can result in the so called super-knock with extremely high pressure oscillation above 200?atm. In this study, numerical simulations of autoignitive reaction front propagation in hydrogen/air mixtures are conducted and the detonation development regime is investigated. A hot spot with linear temperature distribution is used to induce autoignitive reaction front propagation. With the change of temperature gradient or hot spot size, three typical autoignition reaction front modes are identified: supersonic reaction front; detonation development and subsonic reaction front. The effects of initial pressure, initial temperature, fuel type and equivalence ratio on detonation development regime are examined. It is found that the detonation development regime strongly depends on mixture composition (fuel and equivalence ratio) and thermal conditions (initial pressure and temperature). Therefore, to achieve the quantitative prediction of super-knock in engines, we need use the detonation development regime for specific fuel at specific initial temperature, initial pressure, and equivalence ratio.  相似文献   

12.
Wave processes in chemically active multicomponent media: liquid — gas bubbles — liquid drops have been studied experimentally. Existence of detonation waves in multicomponent (bubble-drop) media has been proved. Structure of detonation waves in bubble-drop and bubble media is qualitatively identical: detonation waves are solitary waves with pulsation profile the pressure behind which is close in value to the one in unperturbed medium. Propagation velocity of detonation waves in bubble and bubble-drop media drops with the increase in medium gas phase concentration and with the decrease in carrier liquid viscosity. Presence of liquid drops decreases detonation wave velocity compared with bubble medium that does not contain liquid drops. Detonation wave propagation in multicomponent media causes gas bubbles fragmentation as well as fragmentation of individual liquid drops. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 04-03-33106).  相似文献   

13.
Three-dimensional (3D) detonation simulations solving the compressible Navier-Stokes equations with detailed chemistry are performed in both square channel and round tube geometries. The simulations are compared with each other and with two-dimensional (2D) channel simulations and round tube experiments of identical mixture and conditions (stoichiometric hydrogen-oxygen with 3000 PPMv ozone at 300 K and 15 kPa) with the goal of understanding the effect of confinement and boundaries on detonation structure. Results show that 3D detonations propagate with highly inhomogeneous blast dynamics, where blasts emerge not only from intersections of two transverse waves (similar to 2D propagation) but also from intersections of many transverse waves (unique to 3D detonations in the confinements tested). Intersections of many transverse waves lead to extreme thermodynamic states and highly overdriven wave velocities, well in excess of those seen in the ZND model and in 2D simulations. 3D simulations in the square tube show highly regular blast latticing, smaller detonation cells, and highly oscillatory velocities when compared to the round tube simulations. Round tube simulations show more spatially non-uniform blast dynamics. The conclusions reached in the current work are found irrespective of numerical grid resolution.  相似文献   

14.
The formation of a condensation detonation wave has been experimentally observed in the shock-induced thermal decomposition of acetylene. The stable detonation wave in the 20% C2H2 + 80% Ar mixture has been obtained at an initial pressure behind the shock wave of no less than 30 atm. The main kinetic characteristics of the pyrolysis of acetylene—the period of the induction of condensation and the growth rate constant of condensed particles—have been determined. The correlation of various stages of the process with the heat release in the condensation has been analyzed. It has been shown that the period of the particle growth induction is not accompanied by noticeable heat release. The subsequent condensation stages characterized by significant heat release occur very rapidly (faster than 10−5 s) in the so-called explosive condensation. The analysis of the results indicates that the reactions leading to the growth of large polyhydrocarbon molecules, which precede the formation of condensed carbon particles, constitute the limiting stage of the process, which determines the possibility of the formation of the condensation detonation wave in acetylene. An increase in the pressure is accompanied by the sharp narrowing of the induction region and the transition of the process to the condensation detonation wave.  相似文献   

15.
Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8–10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel–air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel–air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.  相似文献   

16.
Yang Kang 《中国物理 B》2022,31(10):104701-104701
Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle, including peak sound pressure, directivity, and A duration, are experimentally investigated while utilizing gasoline as fuel and oxygen-enriched air as oxidizer. Three annular nozzle geometries are evaluated by varying the ratio of inner cone diameter to detonation tube exit diameter from 0.36 to 0.68. The experimental results show that the annular nozzles have a significant effect on the acoustic characteristics of the detonation sound wave. The annular nozzles can amplify the peak sound pressure of the detonation sound wave at 90° while reducing it at 0° and 30°. The directivity angle of the detonation sound wave is changed by annular nozzles from 30° to 90°. The A duration of the detonation sound wave at 90° is also increased by the annular nozzles. These changes indicate that the annular nozzles have an important influence on the acoustic energy distribution of the detonation sound wave, which amplify the acoustic energy in a direction perpendicular to the tube axis and weaken it along the direction of the tube axis.  相似文献   

17.
We show that the weak detonation waves for a combustion model of Rosales–Majda are nonlinearly stable. Because of the strongly nonlinear nature of the wave, usual stability analysis of weakly nonlinear nature does not apply. The chemical switch on-off is the main feature of nonlinearity. In particular, the propagation of the wave depends sensitively on the tail behaviour of the flow in front of it. Unlike the strong detonation waves, a weak detonation is supersonic and there is the separation of the gas waves from the reacting front. As a consequence, the reacting front needs to be traced. Received: 6 October 1998 / Accepted: 2 February 1999  相似文献   

18.
Numerical investigation of the physics of rotating-detonation-engines   总被引:8,自引:0,他引:8  
Rotating-detonation-engines (RDE’s) represent an alternative to the extensively studied pulse-detonation-engines (PDE’s) for obtaining propulsion from the high efficiency detonation cycle. Since it has received considerably less attention, the general flow-field and effect of parameters such as stagnation conditions and back pressure on performance are less well understood than for PDE’s. In this article we describe results from time-accurate calculations of RDE’s using algorithms that have successfully been used for PDE simulations previously. Results are obtained for stoichiometric hydrogen–air RDE’s operating at a range of stagnation pressures and back pressures. Conditions within the chamber are described as well as inlet and outlet conditions and integrated quantities such as total mass flow, force, and specific impulse. Further computations examine the role of inlet stagnation pressure and back pressure on detonation characteristics and engine performance. The pressure ratio is varied between 2.5 and 20 by varying both stagnation and back pressure to isolate controlling factors for the detonation and performance characteristics. It is found that the detonation wave height and mass flow rate are determined primarily by the stagnation pressure, whereas overall performance is closely tied to pressure ratio. Specific impulses are calculated for all cases and range from 2872 to 5511 s, and are lowest for pressure ratios below 4. The reason for performance loss is shown to be associated with the secondary shock wave structure that sets up in the expansion portion of the RDE, which strongly effects the flow at low pressure ratios. Expansion to supersonic flow behind the detonation front in RDE’s with higher pressure ratios isolate the detonation section of the RDE and thus limit the effect of back pressure on the detonation characteristics.  相似文献   

19.
A demonstrator of a pulse detonation combustion chamber of original design based on a cyclic deflagration- to-detonation transition in a mixture of separately fed liquid hydrocarbon fuel (propane–butane mixture) and air was developed. Fire tests of the demonstrator with an attached air duct, operating frequencies of up to 20 Hz, were performed on a thrust measurement bench. During the tests, wave processes in the gasdynamic duct were monitored and fuel consumption rate and thrust force were measured. At a frequency of operation of the demonstrator within 2–15 Hz, the fuel-based specific impulse was ~1000 s. It is shown that a partial filling of the gasdynamic duct with fuel mixture makes it possible to increase the specific impulse up to ~1100 s.  相似文献   

20.
建立三维的铝粉-空气两相爆轰计算模型,采用时-空守恒元解元(CE/SE)方法求解,并开发了悬浮铝粉尘爆轰的三维数值模拟程序.基于消息传递接口(MPI)技术实现了程序的并行化设计.通过对激波管问题以及爆轰管中铝粉-空气两相爆轰实验的模拟验证程序的可靠性.对拐角空间中左侧浓度为368 g·m-3的铝粉-空气混合物两相爆轰及其在拐角空间右侧和下方空气域内形成的冲击波和温压效应开展数值模拟,获得复杂空间内爆轰波或冲击波的传播、反射以及绕射过程.结果表明:两相爆轰在离铝粉尘区域2 m远的空气域内产生的后效冲击波能达到2.66 MPa的固壁反射压力,火球燃烧范围会超出初始铝粉尘区域约0.8 m,并且造成初始铝粉尘区域附近1.5 m范围内空气的温度高达1 600 K.模拟程序可用于铝粉尘爆轰的后效研究,对工业安全及其防护具有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号