首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
用循环伏安法制备银掺杂聚L-精氨酸修饰玻碳电极(Ag-PA/GCE),研究了芦丁和抗坏血酸在该修饰电极上的电化学行为,建立了芦丁和抗坏血酸同时测定的新方法。在pH=2.5的磷酸盐缓冲溶液(PBS)中,于140mV·s-1的扫速下,芦丁产生一对氧化还原峰,其氧化峰电位为0.552V,还原峰电位为0.491V;抗坏血酸产生一个氧化峰,峰电位为0.281V。芦丁和抗坏血酸的△Epa=0.271V,用氧化峰不需分离可直接对芦丁和抗坏血酸进行同时测定,在最佳条件下,芦丁和抗坏血酸的线性范围分别5.0×10-7~2.0×10-5 mol·L-1和2.5×10-5~5.0×10-3 mol·L-1,检出限分别为1.0×10-7 mol·L-1和1.0×10-5 mol·L-1。方法可用于复方芦丁片中芦丁和抗坏血酸的同时测定。  相似文献   

2.
用电化学方法将氨基乙酸聚合在碳黑微电极表面制得聚氨基乙酸修饰碳黑微电极,并用循环伏安法在pH 7.0的磷酸盐缓冲介质中,研究了该修饰电极的电化学行为.结果表明:在此缓冲介质中,多巴胺和抗坏血酸经在-200 mV(vs.SCE)富集30 s后,在此修饰电极上发生催化氧化反应,并分别在320 mV及42 mV处呈现各自的峰电位(Epa),在多巴胺和抗坏血酸的I″p值及其浓度之间分别在2.0×10-8~1.0×10-4mol·L-1,4.0×10-7~1.0×10-3mol·L-1范围呈线性关系,检出限(3σ)分别为6.0×10-9mol·L-1及1.0×10-7mol·L-1.此修饰电极有良好的重复性和稳定性,只需将用过的电极在400 mV置于同一缓冲溶液中清洗0.5~2.0 min,即可方便地再生恢复原有性能.应用此方法分析了含有多巴胺及抗坏血酸的混合溶液,测定结果的相对标准偏差(n=7)在1.6 9,6~2.6%之间,回收率在96%~104%之间.  相似文献   

3.
在含8.0×10-4mol·L-1杯芳烃的0.1 mol·L-1四丁基高氯酸铵溶液中,在-0.4~0.6 V电位下,在碳纤维电极表面电沉积一层杯芳烃膜,制得杯芳烃膜修饰碳纤维电极.采用扫描电镜和交流阻抗法对电极表面的性能进行了表征,采用循环伏安法和计时电流法对其电化学性能进行研究.试验发现:过氧化氢在杯芳烃膜修饰碳纤维电极上出现一个明显氧化峰,氧化峰电位为0.6 V,提出了用计时电流法测定过氧化氢的方法.在优化的试验条件下,氧化峰电流与过氧化氢的浓度在1.5×10-5~3.8×10-3mol·L-1范围内呈线性关系,检出限(3S/N)为5.0×10-6mol·L-1.修饰电极用于医用消毒水中过氧化氢的测定,所得结果与高锰酸钾滴定法测定值相一致,用标准加入法做回收率试验,所得结果在97%~104%之间,测定值的相对标准偏差(n=10)为4%.  相似文献   

4.
首先在非水介质中通过电化学氧化将L-酪氨酸以C-N键共价键合在玻碳电极表面,形成L-酪氨酸接枝单层膜.再在L-酪氨酸功能化的玻碳电极上对邻苯二胺进行电化学聚合,从而制备了聚邻苯二胺/L-酪氨酸复合膜修饰玻碳电极(聚-o-PD-Tyr/GCE).研究发现聚-o-PD-Tyr/GCE在pH 6.8的磷酸缓冲溶液(PBS)中对抗坏血酸的电化学氧化具有催化作用,其氧化电位为0.35 V,比在裸玻碳电极上(0.58 V)降低了0.23 V,峰电流也明显升高.抗坏血酸在修饰电极上响应电流与其浓度在2.5×10-4~1.5×10-3mol·L-1范围内呈线性关系,检出限(3s/k)为43.64μmol·L-1.经修饰的电极保存在0.1 mol·L-1PBS中,可至少稳定5d.对5×10-4mol·L-1抗坏血酸溶液连续测定10次,测得此电极的相对标准偏差为3.2%.  相似文献   

5.
将羧基化多壁碳纳米管分散在L-半胱氨酸溶液中并滴涂在玻碳电极表面.将上述电极在pH 6.9的B-R缓冲溶液中,于-1.0~2.5 V的电位范围内进行电聚合,制备了聚L-半胱氨酸/多壁碳纳米管复合修饰电极(Pol-L-Cys/MWCNTs/GCE).研究发现,邻苯二酚和对苯二酚在聚L-半胱氨酸/多壁碳纳米管复合修饰电极上分别出现了一对氧化还原峰,且两者的氧化峰电位差达101 mV,提出了用微分脉冲伏安法同时测定邻苯二酚和对苯二酚的方法.氧化峰电流与邻苯二酚和对苯二酚的浓度在1.0×10-5~1.0×10-3mol·L-1呈线性关系,检出限(3S/N)均达1.0×10-5mol·L-1.修饰电极用于模拟样品中邻苯二酚和对苯二酚的测定,回收率在82.0%~107.0%之间.  相似文献   

6.
在由pH6.0磷酸盐缓冲溶液,0.5mol·L-1硝酸钠及1.0×10-4mol.L-1中性红溶液组成的电解质溶液中,用循环伏安法以50mV.s-1扫描速率在玻碳电极上先后在电位-1.3~1.9V及-0.7~0.9V范围内扫描6周及15周,从而制得聚中性红(PNR)膜修饰的玻碳电极。在此修饰电极上,亚硝酸根在电位0.872V(vs.Ag/AgCl)处出现明显的氧化峰。据此并结合流动注射技术提出了安培法测定亚硝酸根的快速方法。方法的工作条件为①采样环体积20μL;②载流0.025mol·L-1磷酸盐缓冲溶液(pH7.0)及0.5mol·L-1氯化钾溶液;③载流流量1.8mL.min-1;④工作电位0.95V(vs.Ag/AgCl)。峰电位值与亚硝酸根浓度在0.8~100μmol.L-1间呈线性关系,其检出限(3σ)为1.0×10-7mol.L-1。以浓度为4.0×10-6mol.L-1亚硝酸根标准溶液平行测定8次,测得其相对标准偏差为3.6%。用此修饰电极连续检测24h,其电流信号保持稳定。此方法应用于分析火腿肠及自来水、湖水等样品,所得回收率在93.0%~112.0%之间。  相似文献   

7.
以亚甲基蓝为电子媒介,通过壳聚糖固定胆固醇氧化酶和辣根过氧化酶在丝网印刷电极表面,制成了一种新型胆固醇生物传感器,实现了低电位下对胆固醇的间接测定.循环伏安法和恒电位法用于研究修饰电极的电化学特性,在优化的试验条件下,安培法对胆固醇响应的线性范围为2.0×10-5~3.0×10-3mol·L-1,检出限(3S/N)为5.0×10-6mol·L-1.用同一支电极对6.0×10-4mol·L-1胆固醇溶液进行10次连续测定,测定值的相对标准偏差为4.6%,用3支电极做相同试验,测得相对标准偏差为6.2%.应用此传感器测定了血清样品中胆固醇含量,测定值的相对标准偏差(n=5)以及回收率试验结果依次在2.3%~6.1%之间及94.3%~105.2%之间.  相似文献   

8.
制备了石墨烯修饰玻碳电极,研究了酪氨酸在修饰电极上的电化学行为.优化了包括支持电解质、溶液pH、修饰剂用量、富集电位及时间等测定条件.在0.1 mol·L-1pH 7.0的磷酸盐缓冲溶液中,峰电流与酪氨酸的浓度在3×10-6~1.2×10-4mol·L-1的范围内呈良好的线性关系,检出限为2 × 10-7 mol·L-...  相似文献   

9.
将含有1.0%普鲁士蓝的碳黑与固体石蜡按2.5∶1(质量比)混合后装入φ0.2mm的石英毛细管中,在其上端插入一铂丝并抛光后即制成普鲁士蓝修饰碳黑微电极.对多巴胺(DA)及抗坏血酸(VC)在此电极上的电化学行为及应用此电极测定两组分的最佳条件进行了研究,在定量测定中采用二次微分线性扫描伏安法.在最佳条件下,DA与VC的峰电流(i″p)分别与各自的浓度保持如下线性关系:DA为4.0×10-6~8.0×10-4mol·L-1,VC为6.0×10-5~1.0×10-3mol·L-1;检出限(3σ)依次为2.0×10-6mol·L-1及1.0×10-5mol·L-1.应用此方法分析了3种含DA及VC的混合溶液,测得结果的相对标准偏差(n=8)依次小于2.0%及3.0%,回收率范围依次为96.5%~101.0%及95.0%~102.5%.  相似文献   

10.
研究了抗坏血酸在β-环糊精/聚苯胺修饰玻碳电极上的电化学行为。采用电聚合方法制备了β-环糊精/聚苯胺修饰玻碳电极,在聚苯胺和β-环糊精的协同作用下,电极对抗坏血酸具有显著的催化氧化作用。抗坏血酸浓度在1.0×10-6~1.0×10-4 mol·L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)为8.1×10-7 mol·L-1。对5.0×10-6 mol·L-1的抗坏血酸溶液连续测定6次,测定值的相对标准偏差为0.21%。该方法选择性和重复性好,可在多巴胺存在下选择性测定抗坏血酸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号