首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
Laser Induced Breakdown Spectroscopy (LIBS) can be considered as a prominent technology for compositional analysis of materials in low-pressure space applications. In space applications, usually LIBS is conducted in a low-pressure environment and proper understanding of the plasma parameters is significant for any improvement in the system. A model is developed to describe the heating and subsequent melting, vaporization and ionization of a target material during LIBS process. A numerical model based on one-dimensional thermal conductivity equation is being used to simulate the target evaporation and a hydrodynamic model is used to simulate plume expansion. Further, an experimental approach of measuring spectral emission from the ablation plume using emission spectroscopy and estimating the plasma state, such as the ionization species, and average plasma temperature, is investigated. An important result of this work is that for different ambient conditions, laser ablation plume dynamics can be estimated.  相似文献   

2.
石墨烯气凝胶复合相变材料的热物性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
相变材料利用其相变潜热能力可吸收储存和释放利用热量,同时在相变过程中其温度浮动小,能够实现温度控制从而用于热管理.但是其低热导率和易泄露问题严重制约了其性能.石墨烯气凝胶因其丰富的多孔结构而具有较大的比表面积,可吸附相变材料解决其泄露问题,同时石墨烯的高导热系数可提高相变材料的热导率.这里选取正十八烷为相变材料,制备了不同质量分数的石墨烯气凝胶复合相变材料.测得石墨烯气凝胶含量为13.99 wt%的样品,其导热系数比纯正十八烷高出306.2%,熔化潜热和凝固潜热分别下降了13.8%和10.8%.分子动力学模拟结果表明,石墨烯气凝胶的引入会在一定程度上增强正十八烷分子的有序性和一致性,即在同一温度下复合相变材料中的正十八烷分子比纯正十八烷分子拥有更集中分布的末端距和扭转角,径向分布函数和自扩散系数都相对较低,说明石墨烯材料的引入可以提升正十八烷的导热系数.  相似文献   

3.
孙健  刘伟强 《物理学报》2012,61(17):174401-174401
针对高超声速飞行器工作时头锥恶劣的热环境,为了保证飞行器头锥的尖锐外形, 提出疏导式热防护结构,利用内置高导热碳材料结构为飞行器头锥提供热防护. 采用流固耦合方法对头锥疏导式防热结构进行了分析,验证了头锥内置高导热碳材料具有较好防热效果, 其中来流马赫数(Ma)为9时头锥前缘壁面最高温度下降了21.9%,尾部最低温度升高了15.2%, 实现了热流由高温区向低温区的转移,削弱了头锥的热载荷,强化了头锥的热防护能力. 本文对外蒙皮结构参数、材料参数以及内部高导热碳材料导热率对头锥热防护性能的影响进行了分析, 其中头锥最高温度随着蒙皮材料导热系数的增加而降低到一个稳定值; 随着蒙皮材料表面黑度的增加而降低;随着蒙皮厚度的增加而升高;随着高导热碳材料导热系数的 增加而呈抛物线下降.  相似文献   

4.
The aim of this review article is to consolidate the important research works dedicated to polymers which are mainly used target material for heat transfer applications. The requirement of present day heat transfer equipment is compactness, lightweight, manufacturability, and lower cost. Materials like copper and aluminum though have better thermal conductivity but they are expensive and also heavy. Polymers are cheaper and easy to manufacture, recycle though they have sufficiently lower thermal conductivity compared to copper and aluminum. Polymer materials are thermally insulating material. It is too difficult to improve the amorphous nature of polymer material in order to achieve high thermal conductivity. One key path to increase the thermal conductivity of a polymer is to reinforce high thermal conductive fillers in the host matrix. In this review paper, an attempt is made to explore and summarize various key paths suggested by the researchers to develop high thermal conductive polymer composites.  相似文献   

5.
Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace's equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat.  相似文献   

6.
Caihong Jia 《中国物理 B》2022,31(4):40701-040701
Investigating the thermal transport properties of materials is of great importance in the field of earth science and for the development of materials under extremely high temperatures and pressures. However, it is an enormous challenge to characterize the thermal and physical properties of materials using the diamond anvil cell (DAC) platform. In the present study, a steady-state method is used with a DAC and a combination of thermocouple temperature measurement and numerical analysis is performed to calculate the thermal conductivity of the material. To this end, temperature distributions in the DAC under high pressure are analyzed. We propose a three-dimensional radiative-conductive coupled heat transfer model to simulate the temperature field in the main components of the DAC and calculate in situ thermal conductivity under high-temperature and high-pressure conditions. The proposed model is based on the finite volume method. The obtained results show that heat radiation has a great impact on the temperature field of the DAC, so that ignoring the radiation effect leads to large errors in calculating the heat transport properties of materials. Furthermore, the feasibility of studying the thermal conductivity of different materials is discussed through a numerical model combined with locally measured temperature in the DAC. This article is expected to become a reference for accurate measurement of in situ thermal conductivity in DACs at high-temperature and high-pressure conditions.  相似文献   

7.
根据传热理论,建立了大功率发光二极管的有限元模型.选择了4种键合材料(高导热导电银胶、纳米银焊膏,大功率芯片键合胶、Sn70Pb30),4种基板材料(Al2O3、AlN、Al-SiC、铜钼合金).采用ANSYS有限元热分析软件进行了温度场仿真,得到了大功率发光二极管封装材料的最优选择.研究了基板厚度、芯片输出功率及外接热沉时对发光二极管结温的影响.结果表明:纳米银焊膏-AlN组合具有最优的散热效果|增加散热基板厚度提高散热能力的作用不大|单个发光二极管输出功率有限,应优化封装结构并采用多芯片阵列来满足照明级的需要|外接铝热沉能达到理想的散热效果.  相似文献   

8.
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.  相似文献   

9.
Investigations are performed on thermal, optical and electrical response of UV laser-irradiated platinum (Pt). 4N pure, annealed and fine polished samples are exposed to the KrF Excimer laser (248 nm, 20 ns, 50 mJ) under vacuum ~10?6 torr at different laser fluences (0.5–2.5 J/cm2). Space-resolved plasma plume dynamics is studied by analyzing the captured plume images with the help of a computer controlled image-grabbing system. The irradiated targets are characterized for surface morphology, structural, optical and electrical investigations using the diagnostics; scanning electron microscopy, X-ray diffraction, rotating compensator auto-aligned ellipsometer and four-point probe, respectively. The value of maximum intensity emitted by Pt plasma plume is 250 grey scales. Surfaces of the target metals are modified by craters, moltens and redeposited material. Laser-induced periodic surface structures are produced at low laser fluence. Irradiation of Pt causes changes in diffracted X-rays intensity and grain sizes, dislocation in line densities and strain in the target materials. Considerable changes occur in optical parameters as well. A decrease in electrical conductivity of the irradiated targets also takes place in an exponential way with the change in laser fluence.  相似文献   

10.
林长鹏  刘新健  饶中浩 《物理学报》2015,64(8):83601-083601
采用分子动力学方法模拟了纳米金属铝在粒径为0.8-3.2 nm 时的熔点、密度和声子热导率的变化, 研究了粒径为1.6 nm的铝纳米颗粒的密度、比热和声子热导率随温度的变化. 采用原子嵌入势较好地模拟了纳米金属铝的热物性及相变行为, 根据能量-温度曲线和比热容-温度曲线对铝纳米颗粒的相变温度进行了研究, 并利用表面能理论、尺寸效应理论对铝纳米颗粒熔点的变化进行了分析. 随着纳米粒径的不断增大, 铝纳米颗粒的熔点呈递增状态, 当粒径在2.2-3.2 nm时, 熔点的增幅减缓, 但仍处于递增趋势. 随着纳米粒径的增大, 铝纳米颗粒的密度呈单调递减, 热导率则呈线性单调递增, 且热导率的变化情况符合声子理论. 随着温度的升高, 粒径为1.6 nm的铝纳米颗粒的密度、热导率均减小. 该模拟从微观原子角度对纳米材料的热物性进行了研究, 对设计基于铝纳米颗粒的相变材料具有指导意义.  相似文献   

11.
相变材料的固液相变具有较高的相变潜热且相变体积变化小,在间歇性工作的电子器件的温控中得到广泛的应用。本文采用将铜泡沫嵌入相变材料中的方法来强化固液相变的传热性能的方法,提出一种封装有金属泡沫和相变材料的复合式散热器结构,实验研究了该散热器的加热表面的温度与时间的变化关系,分析铜泡沫孔隙率、孔密度以及石蜡物性等各个参数对该复合式热沉散热效果的影响。  相似文献   

12.
The influence of a magnetic field on the plume produced by KrF-laser ablation of magnesium in vacuum has been investigated using time-integrated photography, streak photography, spectroscopy and charge probes. Line emission spectra in the 200–600 nm interval and effective stream velocities for the plume obtained from the spatiotemporal emission from specific neutral and ion lines are reported. Time of flight velocities are also deduced from measurements using simple charge-collector probes. Changes in the plume structure and dynamics, and enhanced emission and ionization are observed in the presence of the field. A qualitative explanation of the results is given in terms of a magnetohydrodynamic model.  相似文献   

13.
固态金属中声子热传递的分子动力学模拟研究   总被引:2,自引:0,他引:2  
固态金属中的热传递是声子和自由电子共同作用的结果。自由电子引起的热导率可以通过电导率,利用Wiedemann-Franz定律得到,声子引起的热导率目前仍然不能进行实验测量,只能借助其他方法来研究。本文采用非平衡分子动力学(NEMD)方法,用镶嵌原子方法(EAM)势能模型,模拟计算了不同厚度(1.760-10.56nm)金属镍薄膜中由于声子-声子作用引起的热导率。然后根据纳米厚度金属薄膜的热导率借助关联式推到宏观尺度下由于声子-声子作用引起的热导率。结果表明,对于纳米厚度金属薄膜,由于声子-声子作用引起的热导率比块体金属镍的热导率小一个数量级;薄膜厚度越小,声子-声子作用引起的热导率越小;对于块体金属镍,由于声子-声子作用引起的热导率约占其总热导率的33.0%左右。  相似文献   

14.
蔡迪  李静  焦乃勋 《物理学报》2019,68(10):100502-100502
本文分别制备了纳米石墨烯片质量分数为0%, 0.5%, 1%, 1.5%, 2%的纳米石墨烯片-正十八烷复合相变材料,并通过扫描电镜测试、红外光谱分析、差示扫描量热实验及导热分析等实验对其形貌结构及热物性进行表征和研究.实验表明本文制备的纳米石墨烯-正十八烷复合相变材料具有很好的相变稳定性;当纳米石墨烯片的质量分数达到2%时,复合相变材料的导热系数相对于纯十八烷高出了89.4%.  相似文献   

15.
The modification of the thermal conductivity and melting temperature of unrelaxed amorphous Ge films on Si substrates upon laser-induced relaxation and crystallization is presented. Real-Time Reflectivity (RTR) measurements are used to determine experimentally both the melting threshold and the melt durations, and the finite element method is used to simulate the laser-induced heat-flow process. A thermal conductivity ofk=0.010 W dem K is determined for the unrelaxed material by fitting the experimental melting thresholds of unrelaxed films of different thicknesses. A similar procedure applied to the amorphous relaxed and crystallized materials lead to a shift to higher values of both the thermal conductivity and the melting temperature. In order to achieve a good fit of the experimental melt durations, it was necessary to assume a large degree of undercooling prior to solidification. The role of undercooling in the solidification process is finally discussed in terms of its dependence on the faser energy density and the high thermal conductivity of the substrate.  相似文献   

16.
The Er:YAG laser has proven particularly efficient in cleaning procedures of works of art. The removal of the superficial deposits is achieved through melting, thermal decomposition and evaporation. However, the energy absorbed by vibrational modes is dissipated as heat, increasing the temperature of the surface coating that could cause damage on the object. The aim of this study was to evaluate the temperature increase induced by a Er:YAG MonaLaser (LLC., Orlando, FL, USA). To that purpose, we designed a dedicated device to perform the tests in an inert atmosphere or with a wetting agent, to measure the radiant energy per laser pulse. Tests were carried out both on graphite, which absorbs IR radiation and showed a very intense flash emission, and on different kind of samples representative of materials with different levels of conductivity and thermal diffusivity. Results obtained showed that the temperature increase in the irradiated surface depends on the substrate but never causes the damage of the organic and inorganic material. The use of a solvent as wetting agent has been also tested.  相似文献   

17.
The thermal properties of carbon nanotubes are directly related to their unique structure and small size. Because of these properties, nanotubes may prove to be an ideal material for the study of low-dimensional phonon physics, and for thermal management, both on the macro- and the micro-scale. We have begun to explore the thermal properties of nanotubes by measuring the specific heat and thermal conductivity of bulk SWNT samples. In addition, we have synthesized nanotube-based composite materials and measured their thermal conductivity. The measured specific heat of single-walled nanotubes differs from that of both 2D graphene and 3D graphite, especially at low temperatures, where 1D quantization of the phonon bandstructure is observed. The measured specific heat shows only weak effects of intertube coupling in nanotube bundling, suggesting that this coupling is weaker than expected. The thermal conductivity of nanotubes is large, even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of >200 W/m K at room temperature. A linear K(T) up to approximately 40 K may be due to 1D quantization; measurement of K(T) of samples with different average nanotube diameters supports this interpretation. Nanotube–epoxy blends show significantly enhanced thermal conductivity, showing that nanotube-based composites may be useful not only for their potentially high strength, but also for their potentially high thermal conductivity. Received: 17 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

18.
Nanocomposite phase change materials (NCPCMs) containing different mass fractions (nanomaterial concentration) and different copper nanoparticle (CN)/multi-walled carbon nanotubes (MWCNT) mass ratios were prepared and experimentally studied. Latent heat and thermal conductivity of the NCPCMs were studied and calculated by using the T-history method. The results revealed that addition of CN or MWCNT to the phase change material (PCM) resulted in NCPCMs with enhanced thermal conductivity and charge rates, respectively. However, when both nanoparticle materials were added to the PCM simultaneously, the resulting NCPCMs improved their thermal performance below expectations as a result of agglomeration and sedimentation between the two additives. Thus, the NCPCMs containing only CN or MWCNT showed superior thermophysical properties than the pure PCM, while the NCPCM containing both CN and MWCNT did not improve the thermal characteristic of PCM significantly.  相似文献   

19.
在冰蓄冷空调系统中 ,载冷剂乙二醇溶液的腐蚀性对金属换热管道工作的长期稳定性产生严重影响 ,文中提出采用新型导热塑料来代替传统的金属管道。为了论证导热塑料的可行性 ,对在冰盘管蓄冰槽的蓄冰过程中 ,导热塑料的热导率对其传热性能的影响进行研究。建立了盘管蓄冰过程的物理数学模型 ,求出蓄冰时间随盘管材料热导率的变化曲线 ,并对三种盘管材料对盘管传热性能的影响作出比较 ,认为新型导热塑料制成的冰盘管具有较大的优越性 ,可在工程实际中采用。  相似文献   

20.
王照亮  梁金国  唐大伟  Y.T.Zhu 《物理学报》2008,57(6):3391-3396
考虑纳米碳管与基体之间的热损失,采用四焊盘-3ω法测量了室温下基体表面不同长度单根单壁碳纳米管(SWNT)的导热系数.SWNT的导热系数在测试长度范围(05—7μm)内随长度的增大而增大,增加的幅度逐渐减小.考虑二阶3-声子过程的影响,采用改进的WV模型预测了SWNT导热系数随长度的变化规律.理论预测的声子平均自由程~175nm.导热系数的测量结果与室温下不同长度SWNT的实验结果相吻合.理论预测结果与实验结果均说明SWNT导热系数随长度变化具有尺度效应. 关键词: ω法')" href="#">3ω法 单壁碳纳米管 导热系数 二阶3-声子过程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号