首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the review paper of N. J. Fish, the topics concerning the basic theory of lower hybrid wave heating and current drive are presented. In the consideration of radio-frequency heating and current drive of tokamak plasma near the lower hybrid frequency, the parallel wave length is imposed by the coupling device parallel to the magnetic field and is modified by gradients along the field. The important effects are found on wave penetration and damping when the toroidal aspect ratio is low. It may be possible to change the plasma current via electron Landau damping with a coupler rf power spectrum.  相似文献   

2.
刘祖光  李新霞  杨明 《计算物理》2020,37(4):467-472
EAST等离子体高约束模运行条件下,在等离子体边缘区域观测到明显的等离子体电流带.在EAST托卡马克装置非圆截面平衡位形下,使用射线追踪方法研究低混杂波高平行折射率N分量对电流驱动的影响.结果表明:当-8≤N≤-6时,平行折射率分量能够在小半径(0.7 < r/a < 1)区域驱动kA量级的等离子体电流.对于具有台基区、等离子体边缘温度更高的电子温度剖面,驱动电流的位置r/a>0.9.低混杂波朗道阻尼的理论分析与数值模拟结果一致.另外,高N低混杂波在等离子体边缘的功率沉积和电流驱动与电子温度分布和发射谱分布相关.  相似文献   

3.
Nonlinear instabilities driven by waves with frequencies comparable to the lower hybrid frequency are examined both analtyically and numerically using particle simulation techniques. Both the oscillating two-stream and ion-cyclotron instabilities are discussed. It is found that ion-cyclotron damping can be a more effective mechanism for driving instabilities in a hot tokamak plasma than electron Landau damping. Despite the one-dimensional nature of the simulation, the simulation results are useful for the interpretation of data obtained in recent lower hybrid heating experiments.  相似文献   

4.
The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated.The magnetized plasma column partially filling a cylindrical metallic tube is considered to be collisionless and non-degenerate.The Landau damping is due to the thermal motion of charge carriers and appears whenever the phase velocity of the plasma waves exceeds the thermal velocity of carriers.The analysis is based on a self-consistent kinetic theory and the solutions of the wave equation in a cylindrical plasma waveguide are presented using Vlasov and Maxwell equations.The hybrid mode dispersion equation for the cylindrical plasma waveguide is obtained through the application of appropriate boundary conditions to the plasma-vacuum interface.The dependence of Landau damping on plasma parameters and the effects of the metallic tube boundary on the dispersion characteristics of plasma and waveguide modes are investigated in detail through numerical calculations.  相似文献   

5.
The dispersion properties and Landau damping rate of ion-acoustic waves (IAWs) with the hybrid Cairns-Tsallis distributed (CTD) electrons and Maxwellian ions are investigated using the plasma kinetic model based on Vlasov-Poisson's equations. For both super-extensive (q < 1) and sub-extensive (q > 1) plasmas, the dielectric response function, real frequency, and Landau damping rate of IAWs are derived. By taking the effect of θi, e (ion-to-electron temperature ratio) into account, it is found that with the increase of ion temperature, the real frequency and wave dispersion effects increase as well (for both super-extensive and sub-extensive cases). Exploring the properties of the Landau damping rate of IAWs with the simultaneous presence of non-thermal parameter α and non-extensive parameter q, a comparison of numerical and analytical results is presented. It is found that in different ranges of θe, i (electron-to-ion temperature ratio), on decreasing the values of the non-extensive parameter and increasing values of the non-thermal parameter, the weak damping rate is observed (vice versa) in super-extensive or super-thermal plasma, although the trend of the damping rate in sub-thermal plasma is similar (as in the case of super-thermal plasma) but is less weak. It is further revealed that the damping rate of IAWs in thermal plasmas (Maxwellian) is stronger than the damping rate of IAWs in the case of non-thermal plasmas (CTD). The current study is applicable to provide deep insight and further allow the exploration of electrostatic plasma modes in different space and laboratory plasma environments where the hybrid CTD plasma exists.  相似文献   

6.
Non-Maxwellian particle distribution functions possessing high energy tail and shoulder in the profile of distribution function considerably change the damping characteristics of the waves. In the present paper Landau damping of electron plasma (Langmuir) waves and ion-acoustic waves in a hot, isotropic, unmagnetized plasma is studied with the generalized (r,q) distribution function. The results show that for the Langmuir oscillations Landau damping becomes severe as the spectral index r or q reduces. However, for the ion-acoustic waves Landau damping is more sensitive to the ion temperature than the spectral indices.  相似文献   

7.
The linear theory of wave propagation in the lower hybrid range of frequencies is presented. The topics of accessibility, linear and quasi-linear theories of electron Landau damping, and the linear theory of ion Landau damping are covered. The theory of wave propagation is extended to include the effect of toroidal geometry. A simulation model incorporating these theories is described and numerical results obtained with the model are given.  相似文献   

8.
We present first principles simulations of the direct collisionless coupling of the free energy of fusion-born ions into electron current in a magnetically confined fusion plasma. These simulations demonstrate, for the first time, a key building block of some "alpha channeling" scenarios for tokamak experiments. Spontaneously excited obliquely propagating waves in the lower hybrid frequency range undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the electron parallel velocity distribution, which carries a current.  相似文献   

9.
刘燕  龚学余  杨磊  彭晓炜  尹岚 《计算物理》2012,29(3):375-382
用全波方法研究环形对称托卡马克等离子体中离子回旋频率范围内(ICRF)的快波电流驱动(FWCD)问题,考虑有限拉莫尔半径(FLR)效应和平行色散,建立全波计算的物理模型—全波方程,通过对全波方程的数值求解得到快波在等离子体中激发的电场强度分布.结果表明:快波可以传播到高温高密度等离子体的中心;快波在磁轴附近发生了模式转换;快波可以驱动中心的等离子体电流以改善等离子体的平衡位型;平行电场比垂直电场小三个数量级,通过垂直方向的回旋共振和平行方向的穿越期磁泵效应达到驱动电流的目的.  相似文献   

10.
Taotao Zhou 《中国物理 B》2022,31(9):95201-095201
The lower hybrid current drive is a potential candidate for sustaining plasma current in tokamak steady-state operations, which could be used in China Fusion Engineering Test Reactor (CFETR) with input power up to a few tens of megawatts. Such high input power could trigger the well-known parametric instabilities (PIs) at the plasma edge affecting the propagation and absorption of the lower hybrid pump waves. By analytically solving the nonlinear dispersion relation describing PIs, an explicit expression of the PI growth rate is obtained and analyzed in detail. It is found that pressure is the key parameter determining the PI characteristics. Ion sound quasi-mode is the dominant decay channel in the low-pressure regime, while the ion cyclotron quasi-mode (ICQM), as well as its harmonics, becomes dominant in the intermediate regime. In the high-pressure regime, only one mixed channel is found, which is related to Landau damping by free-streaming ions. Analytical expressions of growth rates of these decay channels are also obtained to show the parameter dependence at different pressure limits. The above analytical results are used to estimate the PIs on a typical profile of CFETR, and verified by corresponding numerical calculations. ICQM is found to be the strongest decay channel with a considerable growth rate for CFETR.  相似文献   

11.
季沛勇  鲁楠  祝俊 《物理学报》2009,58(11):7473-7478
利用动理学理论研究量子等离子体中波的色散关系和电子朗道阻尼.从电子的量子流体动力学方程和动理学描述下的光子运动方程出发,研究量子效应对光子朗道阻尼的修正.研究发现量子效应只对纵波模式,即电子等离子体波的色散关系有修正,对横向电磁波的色散关系没有影响.量子效应减小了朗道阻尼,起着朗道增长的作用. 关键词: 量子等离子体 朗道阻尼 电子等离子体波 色散关系  相似文献   

12.
Linear Landau damping and nonlinear wave-particle trapping oscillations are observed with standing plasma waves in a trapped pure electron plasma. For low wave amplitudes, the measured linear damping rate agrees quantitatively with linear Landau damping theory. At larger amplitudes, the wave initially damps at the Landau rate, then regrows and oscillates, approaching a steady state, as predicted by O'Neil in 1965 [Phys. Fluids 8, 2255 (1965)]]. This BGK equilibrium is observed to decay slowly due to external dissipation.  相似文献   

13.
Jun Tao 《中国物理 B》2021,30(12):125202-125202
One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion. It is shown that bounce resonance heating can occur at the first few harmonics of the bounce frequency (nωb,n=1,2,3,...). In the parameter regimes in which bounce resonance overlaps with Landau resonance, the higher harmonic bounce resonance may accelerate electrons at the velocity much lower than the wave phase velocity to Landau resonance region, enhancing Landau damping of the wave. Meanwhile, Landau resonance can increase the number of electrons in the lower harmonic bounce resonance region. Thus electrons can be efficiently heated. The result might be applicable for collisionless electron heating in low-temperature plasma discharges.  相似文献   

14.
Summary Electron oscillations in a plasma are analysed starting from the integral form of Boltzmann-Vlasov equation. The effects of collisions on Landau damping are shown. The conditions for Landau damping existence are derived.
Riassunto Onde elettrostatiche in un plasma sono studiate ricorrendo alla forma integrale dell'equazione di Boltzmann-Vlasov. In particolare, sono stati evidenziati gli effetti prodotti sul Landau damping dalle collisioni. Si è ricavato che in certe condizioni le collisioni possono impedire il Landau damping e si sono ottenuti i valori di soglia.
  相似文献   

15.
Within a kinetic theory for QCD plasmas we study the color response function near thermodynamic equilibrium. Its poles yield a longitudinal and a transverse collective mode, both starting at the plasma frequency. Due to the gluon contribution there is no Landau damping for these modes, and creation of gluon or q-p pairs is the dominant damping mechanism. In an electron plasma the generally quoted Landau damping near threshold is shown to be an artifact of the non-relativistic approximation.  相似文献   

16.
17.
The effect of spin of particles is studied using a semi-classical kinetic theory for a magnetized plasma. No other quantum effects are included. We focus in the simple damping effects for the electrostatic wave modes. Besides Landau damping, we show that spin produces two new different effects of damping or instability which are proportional to ?. These corrections depend on the electromagnetic part of the wave that is coupled with the spin vector.  相似文献   

18.
Nonlinear quantum-mechanical equations are derived for Langmuir waves in an isotropic electron collisionless plasma. A general analysis of dispersion relations is carried out for complex spectra of Langmuir waves and van Kampen waves in a quantum plasma with an arbitrary electron momentum distribution. Quantum nonlinear collisionless Landau damping in Maxwellian and degenerate plasmas is studied. It is shown that collisionless damping of Langmuir waves (including zero sound) occurs in collisionless plasmas due to quantum correction in the Cherenkov absorption condition, which is a purely quantum effect. Solutions to the quantum dispersion equation are obtained for a degenerate plasma.  相似文献   

19.
20.
《Comptes Rendus Physique》2015,16(8):723-728
Landau damping is a fundamental phenomenon in plasma physics, which also plays an important role in astrophysics, and sometimes under different names, in fluid dynamics, and other fields. Its theoretical discussion in the framework of the Vlasov equation often assumes that the reference stationary state is homogeneous in space. However, Landau damping around an inhomogeneous reference stationary state, a natural setting in astrophysics for instance, induces new mathematical difficulties and physical phenomena. The goal of this article is to provide an introduction to these problems and the questions they raise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号