首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A uniform flow past two unequal sized square cylinders arranged in a side-by-side pattern and at a Reynolds number of 50,000 has been investigated using large eddy simulation (LES) technique. The modelling of sub-grid scales of turbulence is done using the Smagorinsky model. The effect of the transverse gap ratio (T/D) on the flow characteristics has been studied. Numerical simulations are carried out for five different transverse gap ratios (T/D), namely 1.120, 1.250, 1.375, 1.750 and 2.500. Results in terms of the aerodynamic forces, Strouhal number, mean base pressure coefficient, streamlines, vorticity, surface pressure distribution, normal and shear stresses are presented. A shift in the stagnation point for the small square cylinder from the centre of its front face towards its gap side is seen at smaller T/D ratios. The presence of a jet-like flow seen in the gap side is more pronounced at T/D = 1.12. A biased gap side flow towards the near wake of the small square cylinder is seen at smaller T/D ratios. No interference effect is seen at T/D = 2.5. The flow behaviour is similar to that of the isolated square cylinder at this gap ratio.  相似文献   

2.
Rising buoyant plumes from a point heat source in a naturally ventilated enclosure have been investigated using large-eddy simulation (LES). The aim of the work is to assess the performance and the accuracy of LES for modelling buoyancy-driven displacement ventilation of an enclosure and to shed more light on the transitional behaviour of the plume and the coherent structures involved. The Smagorinsky sub-grid scale model is used for the unresolved small-scale turbulence. The Rayleigh number, Ra is chosen to be in the range where spatial transition from laminar to turbulent flow takes place (Ra = 1.5 × 109). The plume properties (source strength and rate of spread) as well as the ventilation properties (stratification height and temperature of stratified layer) estimated using the theory of Linden et al. are found to agree reasonably well with the LES results. The variation of the plume width with height indicates a linear variation of the entrainment coefficient rather than a constant value used by Linden et al. for a fully turbulent thermal plume. Flow visualisation revealed the nature of the large-scale coherent structures involved in the transition to turbulence in the plume. The most excited modes observed in the velocity, pressure and temperature fields spectra correspond to Strouhal number in the range 0.3 ≤ St ≤ 0.55 which is in agreement with those observed by Zhou et al. for a turbulent forced plume. Excited modes less than thisvalue (St = 0.2) were observed and may be due to low-frequency motions felt throughout the flow.  相似文献   

3.
This paper describes a numerical study of the two‐dimensional and three‐dimensional unsteady flow over two square cylinders arranged in an in‐line configuration for Reynolds numbers from 40 to 1000 and a gap spacing of 4D, where D is the cross‐sectional dimension of the cylinders. The effect of the cylinder spacing, in the range G = 0.3D to 12D, was also studied for selected Reynolds numbers, that is, Re = 130, 150 and 500. An incompressible finite volume code with a collocated grid arrangement was employed to carry out the flow simulations. Instantaneous and time‐averaged and spanwise‐averaged vorticity, pressure, and streamlines are computed and compared for different Reynolds numbers and gap spacings. The time averaged global quantities such as the Strouhal number, the mean and the RMS values of the drag force, the base suction pressure, the lift force and the pressure coefficient are also calculated and compared with the results of a single cylinder. Three major regimes are distinguished according to the normalized gap spacing between cylinders, that is, the single slender‐body regime (G < 0.5), the reattach regime (G < 4) and co‐shedding or binary vortex regime (G ≥4). Hysteresis with different vortex patterns is observed in a certain range of the gap spacings and also for the onset of the vortex shedding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p  ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.  相似文献   

5.
The behaviour of the wake Strouhal number for flow past a cylinder close to a free surface at both low and moderate Froude numbers is investigated numerically. For the low Froude number case (i.e., gravity-dominated), the results obtained are similar to those for flow past a cylinder close to an adjacent no-slip boundary. As the distance between the wall and the cylinder is reduced, the Strouhal number, as measured from the time varying lift, increases to a maximum at a gap ratio of 0.70. Further gap reduction leads to a rapid decrease in the Strouhal number, with shedding finally ceasing altogether at gap ratios below 0.16. The agreement between the results for a free surface and a no-slip boundary suggests that the mechanism behind the suppression of vortex shedding is common. For flow at a fixed gap ratio and a moderate Froude number, two distinctly different wake states are observed with the flow passing over the cylinder tending to switch from a state of attachment to the free surface, to one of separation from it, and then back again in a pseudo-periodic fashion. Even though there is a significant difference in Reynolds number, the predicted numerical two-dimensional behaviour is found to compare favourably with the experimental observations at higher Reynolds number.  相似文献   

6.
Bio-inspired corrugated airfoils show favourable aerodynamic characteristics such as high coefficient of lift and delayed stall at low Reynolds numbers. Two-dimensional (2D) direct numerical simulation has been performed here on a corrugated airfoil at various angles of attack (0°, +5°, -5°) and Reynolds number of 280 to 6700. The objective is to analyse the pressure variation inside the corrugations and correlate it to the vortex movement across the corrugations and the overall aerodynamic characteristics of the corrugated airfoil. The flow characteristics have been examined based on the local Strouhal numbers in the corrugations of the airfoil. It is observed that the pressure variation in each corrugation is the result of vortex merging and separation in the corrugation which plays a major role in changing the flow characteristics. The Strouhal number of the flow is dictated by the most dominant local Strouhal number. The numerical results are further compared with experimental results obtained using particle image velocimetry, and the two set of results are found to match well. These results are significant because they elucidate the effect of corrugation, angle of attack, and Reynolds number on flow over a corrugated airfoil.  相似文献   

7.
This paper is concerned with the numerical simulation of the flow structure around a square cylinder in a uniform shear flow. The calculations were conducted by solving the unsteady 2D Navier–Stokes equations with a finite difference method. The effect of the shear parameter K of the approaching flow on the vortex-shedding Strouhal number and the force coefficients acting on the square cylinder is investigated in the range K=0·0–0·25 at various Reynolds numbers from 500 to 1500. The computational results are compared with some existing experimental data and previous studies. The effect of shear rate on the Strouhal number and the force acting on the cylinder has a tendency to reduce the oscillation. The Strouhal number, mean drag and amplitude of the fluctuating force tend to decrease as the shear rate increases, but show no significant change at low shear rate. Increasing the Reynolds number decreases the Strouhal number and increases the force acting on the cylinder. At high shear rate the shedding frequencies of the fluctuating drag and lift coefficients are identical. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
The present work describes a numerical procedure to simulate the development of hydrodynamic entry region in a gravity-driven laminar liquid film flow over an inclined plane. It provides a better insight into the physics of developing film in entry region. A novel numerical approach is proposed which has the potential to provide solutions for the complex physics of liquid film spreading on solid walls. The method employs an incompressible flow algorithm to solve the governing equations, a PLIC-VOF method to capture the free surface evolution and a continuum surface force (CSF) model to include the effect of surface tension. To account for the moving contact line on the solid substrate, a precursor film model based wall treatment is implemented. Liquid film flow has been simulated for the Reynolds number range of 5 ≤ Re ≤ 37.5, and the predicted results are found to agree well with the available analytical and experimental data.  相似文献   

9.
In this work, free convective flow and heat transfer in power-law fluids from two heated square cylinders in tandem arrangement is studied. The governing differential equations have been solved numerically over wide ranges of Grashof number, 10 ≤ Gr ≤ 1,000, Prandtl number, 0.71 ≤ Pr ≤ 50 and power-law index, 0.4 ≤ n ≤ 1.8. In order to elucidate the extent of inter-cylinder interaction, the non-dimensional inter-cylinder spacing, L/d is varied in the range, 2 ≤ L/d ≤ 6. The results are interpreted in terms of streamline and isotherm contours in the proximity of two cylinders to gain physical insights into the nature of flow. At the next level, the distribution of the local Nusselt number along the surface of the cylinders is presented. At the minimum inter-cylinder spacing due to the intense interference, the downstream cylinder contributes much less to the overall heat transfer whereas it experiences much higher hydrodynamic drag than the upstream cylinder. Broadly, the local and average Nusselt number for both cylinders show a positive dependence on both Grashof and Prandtl numbers. Also, all else being equal, shear-thinning fluid behaviour promotes the rate of heat transfer and shear-thickening fluid behaviour impedes it. Finally, the present numerical results have been correlated by using simple forms of equations thereby enabling the estimation of Nusselt number in a new application.  相似文献   

10.
Two‐dimensional flows past a stationary circular cylinder near a plane boundary are numerically simulated using an immersed interface method with second‐order accuracy. Instead of a fixed wall, a moving wall with no‐slip boundary is considered to avoid the complex involvement of the boundary layer and to focus only on the shear‐free wall proximity effects for investigating the force dynamics and flow fields. To analyze the convergence and accuracy of our implementation, numerical studies have been first performed on a simple test problem of rotational flow, where the second order of convergence is confirmed through numerical experiments and an optimal range of relative grid‐match ratio of Lagrangian to Eulerian grid sizes has been recommended. By comparing the force quantities and the Strouhal number, the accuracy of this method has been demonstrated on the flow past a stationary isolated cylinder. The cylinder is then put in proximity to the wall to investigate the shear‐free wall proximity effects in the low Reynolds number regime (20≤Re≤200). The gap ratio, e/D, where e denotes the gap between the cylinder and the moving wall and D denotes the diameter of the cylinder, is taken from 0.10 to 2.00 to determine the critical gap ratio, (e/D)critical, for the alternate vortex shedding, where the fluid forces, flow fields and the streamwise velocity profiles are studied. One of the key findings is that the (e/D)critical for the alternate vortex shedding decreases as the Reynolds number increases. We also find that, in this low Reynolds number regime, the mean drag coefficient increases and peaks at e/D = 0.5 with the increase of e/D and keeps decreasing gently from e/D = 0.5 to e/D = 2.0, while the mean lift coefficient decreases monotonically with the increase of e/D. New correlations are then proposed for computing force coefficients as a function of Re and e/D for a cylinder in the vicinity of a moving plane wall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The appearance of a recirculation zone and the formation of non-stationary vortices behind a cylinder in the unconfined flow of a Herschel–Bulkley fluid have been studied by numerical simulation. The Herschel–Bulkley constitutive equation was regularised by using the Papanastasiou model. Special attention was paid to determining the numerical parameters and comparing them to existing results. The influence of the Oldroyd number and power-law index on flow morphology and, in particular, on the unyielded zones was studied over a wide spectrum (0  Od  10) and (0.3  n  1.8). It was seen that the greater the Oldroyd number, the greater the critical Reynolds numbers and Strouhal number for the two flow regimes. The influence of the power-law index is more complex.  相似文献   

12.
The unsteady wake of a flat disk (diameter D) located at a distance of H from a flat plate has been experimentally investigated at a Reynolds number Re D  = 1.3 × 105. Tests have been performed for a range of gap ratio (H/D), spanning from 0.3 to 1.75. The leading edge of the flat plate is either streamlined (elliptical) or blunt (square). These configurations have been studied with PIV, high speed PIV and multi-arrayed off-set fluctuating pressure measurements. The results show a progressive increase of the complexity of the flow and of the interaction as the gap ratio decreases. For large values of H/D (1.75), the interaction is weak and the power spectral densities (PSD) exhibit a strong peak associated with the vortex shedding events (St = 0.131) – St = fD/U is the Strouhal number. For lower values of H/D (0.75), the magnitude of the wall fluctuating pressure increases significantly. A large band contribution is associated with the unsteady wake structure and turbulence. A slight increase of the shedding frequency (St = 0.145) is observed. A critical value of the gap ratio (about 0.35) has been determined. Below this critical value, a three-dimensional separated region is observed and the natural vortex shedding process is very strongly altered. These changes induce a great modification of the fluctuating pressure at the wall. Each interaction reacts in a different way to perturbed upstream conditions. In particular, the disk is an overwhelming perturbation for the lowest H/D value studied here and the relative influence of the upstream turbulence on the wall fluctuating pressure below the near wake region is moderate.  相似文献   

13.
The lift force on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical simulation for low Reynolds numbers (based on the sphere diameter) (Re&lt;68.4) and high dimensionless rotational speeds (Г5). The Navier-Stokes equations in Cartesian coordinate system were solved using a finite volume formulation based on SIMPLE procedure. The accuracy of the numerical simulation was tested through a comparison with available theoretical, numerical and experimental results at low Reynolds numbers, and it was found that they were in close agreement under the above mentioned ranges of the Reynolds number and rotational speed. From a detailed computation of the flow field around a rotational sphere in extended ranges of the Reynolds number and rotational speed, the results show that, with increasing the rotational speed or decreasing the Reynolds number, the lift coefficient increases. An empirical equation more accurate than those obtained by previous studies was obtained to describe both effects of the rotational speed and Reynolds number on the lift force on a sphere. It was found in calcttlations that the drag coefficient is not significantly affected by the rotation of the sphere. The ratio of the lift force to the drag force, both of which act on a sphere in a uniform flow at the same time, was investigated. For a small spherical particle such as one of about 100μm in diameter, even if the rotational speed reaches about 10^6 revolutions per minute, the lift force can be neglected as compared with the drag force.  相似文献   

14.
The effect of spacing between two identical square cylinders placed side by side on the fluid flow and heat transfer is numerically investigated using $ k - \omega - \overline{{\upsilon^{2} }} - f $ turbulence model. The present study is performed at Pr = 0.7 and Re = 10,000, 21,000 for different scaled gap spacing between cylinders in the range of Gl = 0.5–6. It should be noted all geometrical lengths such as Gl are scaled with cylinders side. In order to show the accuracy of $ k - \omega - \overline{{\upsilon^{2} }} - f $ model, part of the results such as various flow patterns (flip-flop, in-phase and anti-phase) and global quantities are compared with the available numerical and experimental results and also a Large Eddy Simulation study of the present work. Based on this comparison, a close agreement is observed. The local and averaged flow and thermal quantities are also compared for two side by side square and circular cylinders and some significant similarities and differences are presented. Progressive increasing and decreasing of the distance between cylinders indicates that the hysteresis phenomenon appears for the gap spacing in the range of Gl = 1–2.5. In the hysteresis range, two different patterns are observed for each distance in the aforementioned range. Also in this range, two different values are found for different quantities such as lift and drag coefficients, Strouhal number and Nusselt number.  相似文献   

15.
The numerical investigation of the two-dimensional laminar flow past two ro- tating circular cylinders in the tandem arrangement is conducted by the lattice Boltzmann method. The numerical strategy is used for dealing with curved and moving boundaries of the second-order accuracy for velocity and temperature fields. The effects of various rotational speed ratios and gap spacing are studied with the Reynolds number of 100 and the Prandtl number of 0.71. A varied range of rotational speed ratios are investigated for four different gap spacing, i.e., 3.0, 1.5, 0.7, and 0.2. The results show that, for the first cylinder, the lift and drag coefficients for large gap spacing are similar to those for a single cylinder; for the second cylinder, the lift coefficient descends with the increase in the angular velocity for all gap spacing, while the drag coefficient ascends except for the gap spacing of 3.0. The results of the averaged periodic Nusselt number on the surface of the cylinders show that, for small distances between the cylinders and low angular velocities, conduction is a dominant mechanism of heat transfer, but for large distances and high angular velocities, convection is the main mechanism of heat transfer.  相似文献   

16.
Results are presented for the unsteady, two-dimensional flow and heat transfer due to a square obstruction of diameter d located asymmetrically between the parallel sliding walls of a channel with length-to-height ratio W/H = 6·44. Analysis is based on the numerical solution of spatially and temporally second-order accurate finite difference approximations of the transport equations expressed in curvilinear co-ordinates. Laminar, constant property flow is assumed for obstruction configurations in which the blockage ratio is d/H = 0·192, the nearest-wall distances are g/d = 0·2, 0·5 and 1, the orientation angles are α=0°, 10° and 20° and the Reynolds numbers are Re=100, 500, and 1000. Preparatory testing of the numerical procedure was performed for a variety of documented flows to verify its physiconumerical accuracy and obtain estimates of the residual grid-dependent uncertainties in the variables calculated. Heat transfer, drag and lift coefficients and Strouhal numbers for the present flow were finally calculated to within 4%–7% of their grid-dependent values using non-uniformly spaced grids consisting of (x=99, y=55) nodes. Above a critical value of the Reynolds number, which depends on the geometrical parameters, the flow is characterized by alternate vortex shedding from the obstruction top and bottom surfaces. Streamline, vorticity and particle streakline plots provide qualitative impressions of the unsteady vortical flow. Especially noteworthy are the extremes in the lift coefficient which ranges from large positive values for an obstruction with g/d=0·2 and α=10° to negative values for one with g/d=0·5 and α=0°. Both the drag and lift coefficients as well as the Strouhal number exhibit non-monotonic variations with respect to the parameters explored. Asymmetries in the obstruction location and orientation account for relatively large vortex-induced periodic variations in heat transfer, especially along the wall nearest the obstruction. Notable differences are also predicted for the heat transfer coefficients of the individual obstruction surfaces as a function of the orientation angle.  相似文献   

17.
This paper presents the effects of cross buoyancy and Prandtl number on the flow and heat transfer characteristics around three equal isothermal square cylinders arranged in a staggered configuration within an unconfined medium. Transient two-dimensional numerical simulations are performed with a finite volume code based on the SIMPLEC algorithm in a collocated grid system. The pertinent dimensionless parameters, such as Reynolds, Prandtl and Richardson numbers are considered in the range of 1 ≤ Re ≤ 30, 0.7 ≤ Pr ≤ 100 and 0 ≤ Ri ≤ 1. The representative streamlines, vortex structures and isotherm patterns are presented and discussed. In addition, the overall drag and lift coefficients and average Nusselt numbers are determined to elucidate the effects of Reynolds, Prandtl and Richardson numbers on flow and heat transfer. The flow is observed to be steady for all the ranges of parameters considered. The drag coefficient is found to decrease with Re (for Ri = 0) and Ri at low Pr, whereas it increases with Pr at higher Ri. The lift coefficient decreases with Ri at low Pr and increases with Pr at higher Ri. The time and surface average cylinder Nusselt number is found to increase monotonically with Re as well as Pr while it remains almost insensitive to Ri at low Pr.  相似文献   

18.
Large-Eddy-Simulation of turbulent heat transfer for water flow in rotating pipe is performed, for various rotation ratios (0 ≤ N ≤ 14). The value of the Reynolds number, based on the bulk velocity and pipe diameter, is Re = 5,500. The aim of this study is to examine the effect of the rotating pipe on the turbulent heat transfer for water flow, as well as the reliability of the LES approach for predicting turbulent heat transfer in water flow. Some predictions for the case of non-rotating pipe are compared to the available results of literature for validation. To depict the influence of the rotation ratio on turbulent heat transfer, many statistical quantities are analyzed (distributions of mean temperature, rms of fluctuating temperature, turbulent heat fluxes, higher-order statistics). Some contours of instantaneous temperature fluctuations are examined.  相似文献   

19.
In various numerical solutions of flow around bluff bodies the unbounded physical domain is replaced by a restricted computational one whose extent depends on the size of the computational grid network. The truncation of the solution domain in the cross-flow direction reduces the computer time required for the solution, but introduces numerical blockage effects which influence considerably the values of the various flow parameters. In the present paper the finite element solution of steady and unsteady flow around a circular cylinder at Re=106 is presented for blockage ratios of 0·05, 0·15 and 0·25. A boundary condition was tested for which the streamfunction values at the outer boundaries were those of the irrotational solution around a circular cylinder. The size of the standing vortices decreases with the blockage ratio when the flow is steady, while the spacing of the vortices decreases in both directions with increasing blockage ratio when the wake becomes unsteady. The hydrodynamic forces on the cylinder and the Strouhal number are magnified as the blockage ratio increases. The application of the streamfunction values derived from the irrotational solution at the outer boundaries reduced blockage effects only at high blockage ratio.  相似文献   

20.
The behavior of vortices induced by a pair of side-by-side square cylinders in an oscillating flow is investigated using an in-house numerical model. The study is carried out for various Keulegan–Carpenter numbers, Reynolds numbers, and cylinder gap spacings. For an oscillating flow past a pair of side-by-side cylinders, the gap ratio plays a vital role in the flow pattern. A jet-like structure is observed when fluid flows through the gap. Moreover, the gap promotes the earlier appearance of asymmetric vortex shedding. In-line force and lift force coefficients of two square cylinders are analyzed using spectral analysis. An autocorrelation function is used to determine the relation between flow patterns around two cylinders. These results demonstrate the transition of the flow field from the periodic state to the chaotic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号