共查询到20条相似文献,搜索用时 15 毫秒
1.
George C. Bourantas Benjamin F. Zwick Theo Philippe Lavier Vassilios C. Loukopoulos Athanassios A. Dimas Adam Wittek Karol Miller 《国际流体数值方法杂志》2023,95(1):143-175
We present a strong form meshless solver for numerical solution of the nonstationary, incompressible, viscous Navier–Stokes equations in two (2D) and three dimensions (3D). We solve the flow equations in their stream function-vorticity (in 2D) and vector potential-vorticity (in 3D) formulation, by extending to 3D flows the boundary condition-enforced immersed boundary method, originally introduced in the literature for 2D problems. We use a Cartesian grid, uniform or locally refined, to discretize the spatial domain. We apply an explicit time integration scheme to update the transient vorticity equations, and we solve the Poisson type equation for the stream function or vector potential field using the meshless point collocation method. Spatial derivatives of the unknown field functions are computed using the discretization-corrected particle strength exchange method. We verify the accuracy of the proposed numerical scheme through commonly used benchmark and example problems. Excellent agreement with the data from the literature was achieved. The proposed method was shown to be very efficient, having relatively large critical time steps. 相似文献
2.
Daniel Hupp Peter Arbenz Dominik Obrist 《International Journal of Computational Fluid Dynamics》2016,30(7-10):489-494
We investigate the performance of a multi-harmonic space–time approach to solve time-periodic flow problems. It employs a Fourier spectral discretisation of the time domain. The resulting large system of nonlinear equations is solved iteratively and in parallel. For illustration, a three-dimensional channel flow disturbed by an oscillating force is simulated. 相似文献
3.
4.
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart--Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies. 相似文献
5.
M.F.M. Speetjens H.J.H. Clercx 《International Journal of Computational Fluid Dynamics》2013,27(3):191-209
A numerical algorithm intended for the study of flows in a cylindrical container under laminar flow conditions is proposed. High resolution of the flow field, governed by the Navier–Stokes equations in velocity–vorticity formulation relative to a cylindrical frame of reference, is achieved through spatial discretisation by means of the spectral method. This method is based on a Fourier expansion in the azimuthal direction and an expansion in Chebyshev polynomials in the (nonperiodic) radial and axial directions. Several regularity constraints are used to take care of the coordinate singularity. These constraints are implemented, together with the boundary conditions at the top, bottom and mantle of the cylinder, via the tau method. The a priori unknown boundary values of the vorticity are evaluated by means of the influence-matrix technique. The compatibility between the mathematical and numerical formulation of the Navier–Stokes equations is established through a tau-correction procedure. The resolved flow field exhibits high-precision satisfaction of the incompressibility constraints for velocity and vorticity and the definition of the vorticity. The performance of the solver is illustrated by resolution of several configurations representative of generic three-dimensional laminar flows. 相似文献
6.
Roque Corral Fernando Gisbert Jesus Pueblas 《International Journal of Computational Fluid Dynamics》2017,31(2):93-108
The implementation of an edge-based three-dimensional Reynolds Average Navier–Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power. 相似文献
7.
Daniel A. Nelson Gustaaf B. Jacobs David A. Kopriva 《Theoretical and Computational Fluid Dynamics》2016,30(4):363-385
The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier–Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes. 相似文献
8.
Antonio Russo 《Journal of Mathematical Fluid Mechanics》2009,11(3):407-414
We consider the stationary motion of a viscous incompressible fluid in a two-dimensional exterior domain; we prove that the problem has a solution for small values of the flux of the boundary datum through the boundary. 相似文献
9.
We consider the barotropic Navier–Stokes system describing the motion of a compressible viscous fluid confined to a straight layer \({\Omega_\varepsilon = \omega\times (0, \varepsilon)}\) , where ω is a particular 2-D domain (a periodic cell, bounded domain or the whole 2-D space). We show that the weak solutions in the 3D domain converge to a (strong) solutions of the 2-D Navier–Stokes system on ω as \({\varepsilon \to 0}\) on the maximal life time of the strong solution. 相似文献
10.
Pablo Pedregal 《Journal of Mathematical Fluid Mechanics》2012,14(1):159-176
We introduce a variational approach to treat the regularity of the Navier–Stokes equations both in dimensions 2 and 3. Though
the method allows the full treatment in dimension 2, we seek to precisely stress where it breaks down for dimension 3. The
basic feature of the procedure is to look directly for strong solutions, by minimizing a suitable error functional that measures
the departure of feasible fields from being a solution of the problem. By considering the divergence-free property as part
of feasibility, we are able to avoid the explicit analysis of the pressure. Two main points in our analysis are:
1 |
Coercivity for the error functional is achieved by looking at scaling. 相似文献
11.
Zhansen Qian Chun-Hian Lee 《International Journal of Computational Fluid Dynamics》2015,29(6-8):400-410
A new HLLC (Harten-Lax-van leer contact) approximate Riemann solver with the preconditioning technique based on the pseudo-compressibility formulation for numerical simulation of the incompressible viscous flows has been proposed, which follows the HLLC Riemann solver (Harten, Lax and van Leer solver with contact resolution modified by Toro) for the compressible flow system. In the authors' previous work, the preconditioned Roe's Riemann solver is applied to the finite difference discretisation of the inviscid flux for incompressible flows. Although the Roe's Riemann solver is found to be an accurate and robust scheme in various numerical computations, the HLLC Riemann solver is more suitable for the pseudo-compressible Navier--Stokes equations, in which the inviscid flux vector is a non-homogeneous function of degree one of the flow field vector, and however the Roe's solver is restricted to the homogeneous systems. Numerical investigations have been performed in order to demonstrate the efficiency and accuracy of the present procedure in both two- and three-dimensional cases. The present results are found to be in good agreement with the exact solutions, existing numerical results and experimental data. 相似文献
12.
《Comptes Rendus Mecanique》2019,347(10):677-684
Some implications of the simplest accounting of defects of compatibility in the velocity field on the structure of the classical Navier–Stokes equations are explored, leading to connections between classical elasticity, the elastic theory of defects, plasticity theory, and classical fluid mechanics. 相似文献
13.
Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction. 相似文献
14.
S. Abide M. S. Binous B. Zeghmati 《International Journal of Computational Fluid Dynamics》2017,31(4-5):214-229
This article provides a strategy for solving incompressible turbulent flows, which combines compact finite difference schemes and parallel computing. The numerical features of this solver are the semi-implicit time advancement, the staggered arrangement of the variables and the fourth-order compact scheme discretisation. This is the usual way for solving accurately turbulent incompressible flows. We propose a new strategy for solving the Helmholtz/Poisson equations based on a parallel 2d-pencil decomposition of the diagonalisation method. The compact scheme derivatives are computed with the parallel diagonal dominant (PDD) algorithm, which achieves good parallel performances by introducing a bounded numerical error. We provide a new analysis of its effect on the numerical accuracy and conservation features. Several numerical experiments, including two simulations of turbulent flows, demonstrate that the PDD algorithm maintains the accuracy and conservation features, while conserving a good parallel performance, up to 4096 cores. 相似文献
15.
Kai Liu Yi Lu Changfu You 《International Journal of Computational Fluid Dynamics》2013,27(6-7):251-267
The flux reconstruction (FR) formulation can unify several popular discontinuous basis high-order methods for fluid dynamics, including the discontinuous Galerkin method, in a simple, efficient form. An arbitrary Lagrangian–Eulerian (ALE) extension to the high-order FR scheme is developed here for moving mesh fluid flow problems. The ALE Navier–Stokes equations are derived by introducing a grid velocity. The conservation law are spatially discretised on hybrid unstructured meshes using Huynh’s scheme (Huynh 2007) on anisotropic elements (quadrilaterals) and using Correction Procedure via Reconstruction scheme on isotropic elements (triangles). The temporal discretisation uses both explicit and implicit treatments. The mesh movement is described by node positions given as a time series, instead of an analytical formula. The geometric conservation law is tested using free stream preservation problem. An isentropic vortex propagation test case is performed to show the high-order accuracy of the developed method on both moving and fixed hybrid meshes. Flow around an oscillating cylinder shows the capability of the method to solve moving boundary viscous flow problems, with the numeric method further verified by comparison of the result on a smoothly deforming mesh and a rigid moving mesh. 相似文献
16.
The first goal of this paper is to study the large time behavior of solutions to the Cauchy problem for the 3-dimensional incompressible Navier–Stokes system. The Marcinkiewicz space L3, is used to prove some asymptotic stability results for solutions with infinite energy. Next, this approach is applied to the analysis of two classical regularized Navier–Stokes systems. The first one was introduced by J. Leray and consists in mollifying the nonlinearity. The second one was proposed by J.-L. Lions, who added the artificial hyper-viscosity (–)/ 2, > 2 to the model. It is shown in the present paper that, in the whole space, solutions to those modified models converge as t toward solutions of the original Navier–Stokes system. 相似文献
17.
Jianming Liu Ning Zhao Ou Hu Mikhail Goman Xin Kai Li 《International Journal of Computational Fluid Dynamics》2013,27(3):151-163
This paper presents an immersed boundary method for compressible Navier–Stokes equations in irregular domains, based on a local radial basis function approximation. This approach allows one to define a reconstruction of the radial basis functions on each irregular interface cell to treat both the Dirichlet and Neumann boundary conditions accurately on the immersed interfaces. Several numerical examples, including problems with available analytical solutions and the well-documented flow past an airfoil, are presented to test the proposed method. The numerical results demonstrate that the proposed method provides accurate solutions for viscous compressible flows. 相似文献
18.
19.
The Navier–Stokes system with damping, which is motivated by Stommel–Charney model of ocean circulation, is considered in
a large elongated periodic rectangular domain with area of the order α−1, as α → 0. We obtain estimates for the dimension of the global attractor that are sharp as both α → 0 and ν → 0, where ν is the viscosity coefficient.
This work was supported in part by the US Civilian Research and Development Foundation, grant no. RUM1-2654-MO-05 (A.A.I.
and E.S.T.). The work of A.A.I. was supported in part by the Russian Foundation for Fundamental Research, grants no. 06-001-0096
and no. 05-01-429, and by the RAS Programme no. 1 ‘Modern problems of theoretical mathematics’. The work of E.S.T. was supported
in part by the NSF, grant no. DMS-0204794, the MAOF Fellowship of the Israeli Council of Higher Education, and by the BSF,
grant no. 200423. 相似文献
20.
Qingfang Liu 《International Journal of Computational Fluid Dynamics》2013,27(6):461-475
A fully discrete postprocessing mixed finite element scheme is considered for solving the time-dependent Navier–Stokes equations. In the PP method, we only consider a non-linear equation in the coarse-level subspace and a linear problem in the fine-level subspace. The analysis shows that the PP scheme can reach the same accuracy as the standard Galerkin method with a very fine mesh size h by an appropriate choice of H. Numerical examples are provided that confirm both the theoretical analysis and the corresponding improvement in computational efficiency. 相似文献
|